Dexamethasone (Dex) is used widely to induce differentiation in human mesenchymal stem cells (hMSCs); however, using a pharmaceutical agent to stimulate hMSC differentiation is not the best choice for engineered tissue transplantation due to potential side-effects. The goal of the present study was to investigate the effects of dynamic compressive loading on differentiation and mineralized matrix production of hMSCs in 3D polyurethane scaffolds, using a loading regimen previously shown to stimulate mineralised matrix production of mature bone cells (MLO-A5). hMSCs were seeded in polyurethane scaffolds and cultured in standard culture media with or without Dex. Cell-seeded scaffolds were compressed at 5% global strain for 2 h on day 9 and then every 5 days in a media-filled sterile chamber. Samples were tested for mRNA expression of alkaline phosphatase (ALP), osteopontin (OPN), collagen type 1 (col 1) and runt-related transcription factor-2 (RUNX-212 h) after the first loading, cell viability by MTS assay and alkaline phosphatase activity at day 12 of culture and cell viability, collagen content by Sirius red and calcium content by alizarin red at day 24 of culture. Neither Dex nor loading had significant effects on cell viability. Collagen content was significantly higher (p<0.01) in the loaded group compared with the non-loaded group in all conditions. There was no difference in ALP activity or the amount of collagen and calcium produced between the non-loaded group supplemented with Dex and the loaded group without Dex. We conclude that dynamic loading has the ability to stimulate osteogenic differentiation of hMSC in the absence of glucocorticoids.
The porcine superflexor tendon (SFT) was identified as having appropriate structure and properties for development of a decellularized device for use in anterior cruciate ligament reconstruction. SFTs were decellularized using a combination of freeze–thaw and washes in hypotonic buffer and 0.1% (w/v) sodium dodecyl sulfate in hypotonic buffer plus proteinase inhibitors, followed by nuclease treatment and sterilization using peracetic acid. The decellularized biological scaffold was devoid of cells and cell remnants and contained only 13 ng/mg (dry weight) residual total DNA. Immunohistochemistry showed retention of collagen type I and III and tenascin-C. Quantitative analysis of sulfated sugar and hydroxyproline content revealed a loss of glycosaminoglycans compared with native tissue, but no loss of collagen. The decellularized SFT was biocompatible in vitro and in vivo following implantation in a mouse subcutaneous model for 12 weeks. Uniaxial tensile testing to failure indicated that the gross material properties of decellularized SFTs were not significantly different to native tissue. Decellularized SFTs had an ultimate tensile strength of 61.8 ± 10.3 MPa (±95% confidence limits), a failure strain of 0.29 ± 0.04, and a Young's modulus of the collagen phase of 294.1 ± 61.9 MPa. Analysis of the presence of the α-Gal (galactose-α-1,3-galactose) epitope by immunohistochemistry, lectin binding, and antibody absorption assay indicated that the epitope was reduced, but still present post decellularization. This is discussed in light of the potential role of noncellular α-Gal in the acceleration of wound healing and tissue regeneration in the presence of antibodies to α-Gal.
Acellular xenogeneic tissues have the potential to provide ‘off‐the‐shelf’ grafts for anterior cruciate ligament (ACL) repair. To ensure that such grafts are sterile following packaging, it is desirable to use terminal sterilization methods. Here, the effects of gamma and electron beam irradiation on the biological and biomechanical properties of a previously developed acellular porcine superflexor tendon (pSFT) were investigated. Irradiation following treatment with peracetic acid was compared to peracetic acid treatment alone and the stability of grafts following long‐term storage assessed. Irradiation did not affect total collagen content or biocompatibility (determined using a contact cytotoxicity assay) of the grafts, but slightly increased the amount of denatured collagen in and decreased the thermal denaturation temperature of the tissue in a dose dependant fashion. Biomechanical properties of the grafts were altered by irradiation (reduced ultimate tensile strength and Young's modulus, increased failure strain), but remained superior to reported properties of the native human ACL. Long term storage at 4°C had no negative effects on the grafts. Of all the conditions tested, a dose of minimum 25 kGy of gamma irradiation had least effect on the grafts, suggesting that this dose produces a biocompatible pSFT graft with adequate mechanical properties for ACL repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2477–2486, 2017.
It is well established that bone responds to mechanical stimuli whereby physical forces are translated into chemical signals between cells, via mechanotransduction. It is difficult however to study the precise cellular and molecular responses using in vivo systems. In vitro loading models, which aim to replicate forces found within the bone microenvironment, make the underlying processes of mechanotransduction accessible to the researcher. Direct measurements in vivo and predictive modeling have been used to define these forces in normal physiological and pathological states. The types of mechanical stimuli present in the bone include vibration, fluid shear, substrate deformation and compressive loading, which can all be applied in vitro to monolayer and three-dimensional (3D) cultures. In monolayer, vibration can be readily applied to cultures via a low-magnitude, high-frequency loading rig. Fluid shear can be applied to cultures in multiwell plates via a simple rocking platform to engender gravitational fluid movement or via a pump to cells attached to a slide within a parallel-plate flow chamber, which may be micropatterned for use with osteocytes. Substrate strain can be applied via the vacuum-driven FlexCell system or via a four-point loading jig. 3D cultures better replicate the bone microenvironment and can also be subjected to the same forms of mechanical stimuli as monolayer, including vibration, fluid shear via perfusion flow, strain or compression. 3D cocultures that more closely replicate the bone microenvironment can be used to study the collective response of several cell types to loading. This technical review summarizes the methods for applying mechanical stimuli to bone cells in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.