To investigate the importance of different processes to heat stress tolerance, 45 Arabidopsis (Arabidopsis thaliana) mutants and one transgenic line were tested for basal and acquired thermotolerance at different stages of growth. Plants tested were defective in signaling pathways (abscisic acid, salicylic acid, ethylene, and oxidative burst signaling) and in reactive oxygen metabolism (ascorbic acid or glutathione production, catalase) or had previously been found to have temperature-related phenotypes (e.g. fatty acid desaturase mutants, uvh6). Mutants were assessed for thermotolerance defects in seed germination, hypocotyl elongation, root growth, and seedling survival. To assess oxidative damage and alterations in the heat shock response, thiobarbituric acid reactive substances, heat shock protein 101, and small heat shock protein levels were determined. Fifteen mutants showed significant phenotypes. Abscisic acid (ABA) signaling mutants (abi1 and abi2) and the UV-sensitive mutant, uvh6, showed the strongest defects in acquired thermotolerance of root growth and seedling survival. Mutations in nicotinamide adenine dinucleotide phosphate oxidase homolog genes (atrbohB and D), ABA biosynthesis mutants (aba1, aba2, and aba3), and NahG transgenic lines (salicylic acid deficient) showed weaker defects. Ethylene signaling mutants (ein2 and etr1) and reactive oxygen metabolism mutants (vtc1, vtc2, npq1, and cad2) were more defective in basal than acquired thermotolerance, especially under high light. All mutants accumulated wild-type levels of heat shock protein 101 and small heat shock proteins. These data indicate that, separate from heat shock protein induction, ABA, active oxygen species, and salicylic acid pathways are involved in acquired thermotolerance and that UVH6 plays a significant role in temperature responses in addition to its role in UV stress.Plants and other organisms have both an inherent ability to survive exposure to temperatures above the optimal for growth (basal thermotolerance) and an ability to acquire tolerance to otherwise lethal heat stress (acquired thermotolerance). Acquired thermotolerance is induced by a short acclimation period at moderately high (but survivable) temperatures or by treatment with other nonlethal stress prior to heat stress (Kapoor et al., 1990;Vierling, 1991;Flahaut et al., 1996;Burke et al., 2000;Hong and Vierling, 2000;Massie et al., 2003;Larkindale et al., 2005). The ability to withstand and to acclimate to supra-optimal temperatures results from both prevention of heat damage and repair of heat-sensitive components. Organisms must also maintain metabolic homeostasis during stress or be able to reestablish homeostasis subsequent to the stress period. Although plants are frequently subjected to dramatic heating to above the optimal growth temperature, relatively little is known about the critical genes controlling either basal or acquired thermotolerance in plants.Heat stress has a complex impact on cell function, suggesting that many processes are involved in th...