In pathology, tissue images are evaluated using a light microscope, relying on the expertise and experience of pathologists. There is a great need for computational methods to quantify and standardize histological observations. Computational quantification methods become more and more essential to evaluate tissue images. In particular, the distribution of tumor cells and their microenvironment are of special interest. Here, we systematically investigated tumor cell properties and their spatial neighborhood relations by a new application of statistical analysis to whole slide images of Hodgkin lymphoma, a tumor arising in lymph nodes, and inflammation of lymph nodes called lymphadenitis. We considered properties of more than 400, 000 immunohistochemically stained, CD30-positive cells in 35 whole slide images of tissue sections from subtypes of the classical Hodgkin lymphoma, nodular sclerosis and mixed cellularity, as well as from lymphadenitis. We found that cells of specific morphology exhibited significantly favored and unfavored spatial neighborhood relations of cells in dependence of their morphology. This information is important to evaluate differences between Hodgkin lymph nodes infiltrated by tumor cells (Hodgkin lymphoma) and inflamed lymph nodes, concerning the neighborhood relations of cells and the sizes of cells. The quantification of neighborhood relations revealed new insights of relations of CD30-positive cells in different diagnosis cases. The approach is general and can easily be applied to whole slide image analysis of other tumor types.PLOS Computational Biology | https://doi.In pathology, histological diagnosis is still challenging, in particular, for tumor diseases. Pathologists diagnose the disease and its stage of development on the basis of evaluation and interpretation of images of tissue sections. The quantification of experimental data to support decisions of diagnosis and prognosis, applying bioinformatics methods, is an important issue. Here, we introduce a new, general approach to analyze tissue images of tumor and non-tumor patients and to evaluate the distribution of tumor cells in the tissue. Moreover, we consider neighborhood relations between immunostained cells of different cell morphology. We focus on a special type of lymph node tumor, the Hodgkin lymphoma, exploring the two main types of the classical Hodgkin lymphoma, the nodular sclerosis and the mixed cellularity, and the non-tumor case, the lymphadenitis, representing an inflammation of the lymph node. We considered more than 400, 000 cells immunohistochemically stained with CD30 in 35 whole slide images of tissue sections. We found that cells of specific morphology exhibited significant relations to cells of certain morphology as spatial nearest neighbor. We could show different neighborhood patterns of CD30-positive cells between tumor and non-tumor. The approach is general and can easily be applied to other tumor types.
Ischaemic heart disease is among the most frequent causes of death. Early detection of myocardial pathologies can increase the benefit of therapy and reduce the number of lethal cases. Presence of myocardial scar is an indicator for developing ischaemic heart disease and can be detected with high diagnostic precision by magnetic resonance imaging. However, magnetic resonance imaging scanners are expensive and of limited availability. It is known that presence of myocardial scar has an impact on the well-established, reasonably low cost, and almost ubiquitously available electrocardiogram. However, this impact is non-specific and often hard to detect by a physician. We present an artificial intelligence based approach — namely a deep learning model — for the prediction of myocardial scar based on an electrocardiogram and additional clinical parameters. The model was trained and evaluated by applying 6-fold cross-validation to a dataset of 12-lead electrocardiogram time series together with clinical parameters. The proposed model for predicting the presence of scar tissue achieved an area under the curve score, sensitivity, specificity, and accuracy of 0.89, 70.0, 84.3, and 78.0%, respectively. This promisingly high diagnostic precision of our electrocardiogram-based deep learning models for myocardial scar detection may support a novel, comprehensible screening method.
Introduction: Electrocardiography (ECG) is a quick and easily accessible method for diagnosis and screening of cardiovascular diseases including heart failure (HF). Artificial intelligence (AI) can be used for semi-automated ECG analysis. The aim of this evaluation was to provide an overview of AI use in HF detection from ECG signals and to perform a meta-analysis of available studies.Methods and Results: An independent comprehensive search of the PubMed and Google Scholar database was conducted for articles dealing with the ability of AI to predict HF based on ECG signals. Only original articles published in peer-reviewed journals were considered. A total of five reports including 57,027 patients and 579,134 ECG datasets were identified including two sets of patient-level data and three with ECG-based datasets. The AI-processed ECG data yielded areas under the receiver operator characteristics curves between 0.92 and 0.99 to identify HF with higher values in ECG-based datasets. Applying a random-effects model, an sROC of 0.987 was calculated. Using the contingency tables led to diagnostic odds ratios ranging from 3.44 [95% confidence interval (CI) = 3.12–3.76] to 13.61 (95% CI = 13.14–14.08) also with lower values in patient-level datasets. The meta-analysis diagnostic odds ratio was 7.59 (95% CI = 5.85–9.34).Conclusions: The present meta-analysis confirms the ability of AI to predict HF from standard 12-lead ECG signals underlining the potential of such an approach. The observed overestimation of the diagnostic ability in artificial ECG databases compared to patient-level data stipulate the need for robust prospective studies.
isiKnock is an open-source tool, freely available at http://www.bioinformatik.uni-frankfurt.de/tools/isiKnock/. It requires at least Java 8 and runs under Microsoft Windows, Linux, and Mac OS.
The specification and application of policies and guidelines for public health, medical education and training, and screening programmes for preventative medicine are all predicated on trust relationships between medical authorities, health practitioners and patients. These relationships are in turn predicated on a verbal contract that is over two thousand years old. The impact of information and communication technology (ICT), underpinning Health 4.0, has the potential to disrupt this analog relationship in several dimensions; but it also presents an opportunity to strengthen it, and so to increase the take-up and effectiveness of new policies. This paper develops an analytic framework for the trust relationships in Health 4.0, and through three use cases, assesses a medical policy, the introduction of a new technology, and the implications of that technology for the trust relationships. We integrate this assessment in a set of actionable recommendations, in particular that the trust framework should be part of the design methodology for developing and deploying medical applications. In a concluding discussion, we advocate that, in a post-pandemic world, IT to support policies and programmes to address widespread socio-medical problems with mental health, long Covid, physical inactivity and vaccine misinformation will be essential, and for that, strong trust relationships between all the stakeholders are absolutely critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.