BackgroundThere are limited reports of the use of whole exome sequencing (WES) as a clinical diagnostic tool. Moreover, there are no reports addressing the cost burden associated with genetic tests performed prior to WES.ObjectiveWe demonstrate the performance characteristics of WES in a pediatric setting by describing our patient cohort, calculating the diagnostic yield, and detailing the patients for whom clinical management was altered. Moreover, we examined the potential cost-effectiveness of WES by examining the cost burden of diagnostic workups.MethodsTo determine the clinical utility of our hospital’s clinical WES, we performed a retrospective review of the first 40 cases. We utilized dual bioinformatics analyses pipelines based on commercially available software and in-house tools.ResultsOf the first 40 clinical cases, we identified genetic defects in 12 (30%) patients, of which 47% of the mutations were previously unreported in the literature. Among the 12 patients with positive findings, seven have autosomal dominant disease and five have autosomal recessive disease. Ninety percent of the cohort opted to receive secondary findings and of those, secondary medical actionable results were returned in three cases. Among these positive cases, there are a number of novel mutations that are being reported here. The diagnostic workup included a significant number of genetic tests with microarray and single-gene sequencing being the most popular tests. Significantly, genetic diagnosis from WES led to altered patient medical management in positive cases.ConclusionWe demonstrate the clinical utility of WES by establishing the clinical diagnostic rate and its impact on medical management in a large pediatric center. The cost-effectiveness of WES was demonstrated by ending the diagnostic odyssey in positive cases. Also, in some cases it may be most cost-effective to directly perform WES. WES provides a unique glimpse into the complexity of genetic disorders.
BackgroundClinicians ordering multi-gene next-generation sequencing panels for hereditary breast cancer risk have a variety of test panel options. Many panels include lesser known breast cancer genes or genes associated with other cancers. The authors hypothesized that using broader gene panels increases the identification of clinically significant findings, some relevant and others incidental to the testing indication. They examined clinician ordering patterns and compared the yield of pathogenic or likely pathogenic (P/LP) variants in non-BRCA genes of female breast cancer patients.MethodsThis study analyzed de-identified personal and family histories in 1085 breast cancer cases with P/LP multi-gene panel findings in non-BRCA cancer genes and sorted them into three groups by the panel used for testing: group A (breast cancer genes only), group B (commonly assessed cancers: breast, gynecologic, and gastrointestinal), and group C (a more expanded set of tumors). The frequency of P/LP variants in genes with established management guidelines was compared and evaluated for consistency with personal and family histories.ResultsThis study identified 1131 P/LP variants and compared variants in clinically actionable genes for breast and non-breast cancers. Overall, 91.5% of these variants were in genes with management guidelines. Nearly 12% were unrelated to personal or family history.ConclusionBroader panels were used for 85.6% of our cohort (groups B and C). Although pathogenic variants in non-BRCA genes are reportedly rare, the study found that most were in clinically actionable genes. Expanded panel testing improved the identification of hereditary cancer risk. Small, breast-limited panels may miss clinically relevant findings in genes associated with other heritable cancers.Electronic supplementary materialThe online version of this article (doi:10.1245/s10434-017-5963-7) contains supplementary material, which is available to authorized users.
Clinical laboratories have adopted next generation sequencing (NGS) as a gold standard for the diagnosis of hereditary disorders because of its analytic accuracy, high throughput, and potential for cost-effectiveness. We describe the implementation of a single broad-based NGS sequencing assay to meet the genetic testing needs at the University of Minnesota. A single hybrid capture library preparation was used for each test ordered, data was informatically blinded to clinically-ordered genes, and identified variants were reviewed and classified by genetic counselors and molecular pathologists. We performed 2509 sequencing tests from August 2012 till December 2017. The diagnostic yield has remained steady at 25%, but the number of variants of uncertain significance (VUS) included in a patient report decreased over time with 50% of the patient reports including at least one VUS in 2012 and only 22% of the patient reports reporting a VUS in 2017 (p = .002). Among the various clinical specialties, the diagnostic yield was highest in dermatology (60% diagnostic yield) and ophthalmology (42% diagnostic yield) while the diagnostic yield was lowest in gastrointestinal diseases and pulmonary diseases (10% detection yield in both specialties). Deletion/duplication analysis was also implemented in a subset of panels ordered, with 9% of samples having a diagnostic finding using the deletion/duplication analysis. We have demonstrated the feasibility of this broad-based NGS platform to meet the needs of our academic institution by aggregating a sufficient sample volume from many individually rare tests and providing a flexible ordering for custom, patient-specific panels.
Whole exome sequencing (WES) is an integral tool in the diagnosis of genetic conditions in pediatric patients, but concerns have been expressed about the complexity of the information and the possibility for secondary findings that need to be conveyed to those deciding about WES. Currently, there is no validated tool to assess parental understanding of WES. We developed and implemented a survey to assess perceived and actual understanding of WES in parents who consented to clinical WES for their child between July 2013 and May 2015. Fifty-three eligible surveys were returned (57% response rate). Areas with both low perceived and actual understanding about WES included how genes are analyzed and lack of protection against life insurance discrimination. Parents also had low actual understanding for two questions related to secondary findings - reporting of secondary findings in a parent (if tested) and whether secondary findings can be related to traits such as height and hair color. Further work to develop a validated tool to assess understanding of WES would be beneficial as WES is integrated more frequently into clinical care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.