Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.