Background The development of novel broad-spectrum antibiotics, with efficacy against both gram-positive and gram-negative bacteria, has the potential to enhance treatment options for acute bacterial skin and skin structure infections (ABSSSIs). Ceftobiprole is an advanced-generation intravenous cephalosporin with broad in vitro activity against gram-positive (including methicillin-resistant Staphylococcus aureus) and gram-negative pathogens. Methods TARGET was a randomized, double-blind, active-controlled, parallel-group, multicenter, phase 3 noninferiority study that compared ceftobiprole with vancomycin plus aztreonam. The Food and Drug Administration-defined primary efficacy endpoint was early clinical response 48–72 hours after treatment initiation in the intent-to-treat (ITT) population and the European Medicines Agency-defined primary endpoint was investigator-assessed clinical success at the test-of-cure (TOC) visit. Noninferiority was defined as the lower limit of the 95% CI for the difference in success rates (ceftobiprole minus vancomycin/aztreonam) >−10%. Safety was assessed through adverse event and laboratory data collection. Results In total, 679 patients were randomized to ceftobiprole (n = 335) or vancomycin/aztreonam (n = 344). Early clinical success rates were 91.3% and 88.1% in the ceftobiprole and vancomycin/aztreonam groups, respectively, and noninferiority was demonstrated (adjusted difference: 3.3%; 95% CI: −1.2, 7.8). Investigator-assessed clinical success at the TOC visit was similar between the 2 groups, and noninferiority was demonstrated for both the ITT (90.1% vs 89.0%) and clinically evaluable (97.9% vs 95.2%) populations. Both treatment groups displayed similar microbiological success and safety profiles. Conclusions TARGET demonstrated that ceftobiprole is noninferior to vancomycin/aztreonam in the treatment of ABSSSIs, in terms of early clinical response and investigator-assessed clinical success at the TOC visit. Clinical Trials Registration NCT03137173.
Ceftobiprole is an advanced cephalosporin with potent activity against Gram-positive and Gram-negative bacteria that has been approved in many European and non-European countries to treat community- and hospital-acquired pneumonia (excluding ventilator-associated pneumonia). This study reports on the activity of ceftobiprole against a large set of clinical isolates obtained from hospitalized patients in the United States in 2016 that caused serious infections, including pneumonia, bacteremia, and skin and skin structure infections. To assess any potential temporal changes in ceftobiprole activity, the 2016 results were compared to corresponding MIC data from a 2006 U.S. survey that included key target pathogens. Ceftobiprole exhibited potent activity against Staphylococcus aureus (including methicillin-resistant S. aureus isolates, which were 99.3% susceptible), coagulase-negative staphylococci (100% susceptible), Enterococcus faecalis (100% susceptible), Streptococcus pneumoniae (99.7% susceptible), and other tested streptococci. Similarly, ceftobiprole was highly active against Enterobacteriaceae isolates that did not exhibit an extended-spectrum β-lactamase (ESBL) phenotype, including Escherichia coli (99.8% susceptible) and Klebsiella pneumoniae (99.6% susceptible). A total of 99.6% of all Haemophilus influenzae and Moraxella catarrhalis isolates were inhibited at ≤1 mg/liter ceftobiprole, and 72.7% of the Pseudomonas aeruginosa isolates were susceptible to ceftobiprole. With the exception of decreased cephalosporin susceptibility among Enterobacteriaceae isolates, which correlates with an increased prevalence of ESBL-producing isolates, ceftobiprole had similar activities against the isolate sets collected in 2006 and 2016. Therefore, ceftobiprole remains highly active when tested in vitro against a large number of current Gram-positive or Gram-negative pathogens that cause serious infections.
Listeria monocytogenes is a food-borne intracellular bacterial pathogen capable of causing serious human disease. L. monocytogenes survival within mammalian cells depends upon the synthesis of a number of secreted virulence factors whose expression is regulated by the transcriptional activator PrfA. PrfA becomes activated following bacterial entry into host cells where it induces the expression of gene products required for bacterial spread to adjacent cells. Activation of PrfA appears to occur via the binding of a small molecule cofactor whose identity remains unknown. Electrostatic modeling of the predicted PrfA cofactor binding pocket revealed a highly positively charged region with two lysine residues, K64 and K122, located at the edge of the pocket and another (K130) located deep within the interior. Mutational analysis of these residues indicated that K64 and K122 contribute to intracellular activation of PrfA, whereas a K130 substitution abolished protein activity. The requirement of K64 and K122 for intracellular PrfA activation could be bypassed via the introduction of the prfA G145S mutation that constitutively activates PrfA in the absence of cofactor binding. Our data indicate that the positive charge of the PrfA binding pocket contributes to intracellular activation of PrfA, presumably by facilitating binding of an anionic cofactor.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 responds to the host-produced epinephrine and norepinephrine, and bacterially produced autoinducer 3 (AI-3), through two-component systems. Further integration of multiple regulatory signaling networks, involving regulators such as the LysR-type transcriptional regulator (LTTR) QseA, promotes effective regulation of virulence factors. These include the production of flagella, a phage-encoded Shiga toxin, and genes within the locus of enterocyte effacement (LEE) responsible for attaching and effacing (AE) lesion formation. Here, we describe a new member of this signaling cascade, an LTTR heretofore renamed QseD (quorum-sensing E. coli regulator D). QseD is present in all enterobacteria but exists almost exclusively in O157:H7 isolates as a helix-turn-helix (HTH) truncated isoform. This "short" isoform (sQseD) is still able to regulate gene expression through a different mechanism than the full-length K-12 E. coli "long" QseD isoform (lQseD). The EHEC ⌬qseD mutant exhibits increased expression of all LEE operons and deregulation of AE lesion formation. The loss of qseD in EHEC does not affect motility, but the K-12 ⌬qseD mutant is hypermotile. While the lQseD directly binds to the ler promoter, encoding the LEE master regulator, to repress LEE transcription, the sQseD isoform does not. LTTRs bind to DNA as tetramers, and these data suggest that sQseD regulates ler by forming heterotetramers with another LTTR. The LTTRs known to regulate LEE transcription, QseA and LrhA, do not interact with sQseD, suggesting that sQseD acts as a dominant-negative partner with a yet-unidentified LTTR.Enterohemorrhagic Escherichia coli (EHEC) is the causative agent of outbreaks of hemorrhagic colitis and hemolytic uremic syndrome (HUS) throughout the world. Of the multiple pathogenic serotypes of clinical importance, O157:H7, a serotype that is believed to have evolved recently from an O55:H7 atypical enteropathogenic E. coli (aEPEC) strain, is by far the most prevalent and virulent (18,34,40). EHEC strains are part of a larger group of enteric pathogens that includes enteropathogenic E. coli (EPEC), a rabbit EPEC strain, and Citrobacter rodentium, all of which are able to cause attaching and effacing (AE) lesions on intestinal epithelial cells (80).The genes necessary for the formation of these characteristic AE lesions are chromosomally located within the locus of enterocyte effacement (LEE) pathogenicity island (PAI) (49). The LEE is composed of 41 genes, including the LEE-encoded regulator gene (ler) that activates transcription of all LEE genes (50). The majority of the LEE genes are arranged into five major operons that encode both structural proteins that form a type three secretion system (TTSS) and several of the secreted effectors, such as the translocated intimin receptor (Tir), EspH, and Map, which are translocated through the TTSS into host cells (15,20,32,36). Once translocated, Tir embeds itself in the host membrane, where its extracellular domain serves as a docking p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.