Abstract1. Infectious disease transmission often depends on the contact structure of host populations. Although it is often challenging to capture the contact structure in wild animals, new technology has enabled biologists to obtain detailed temporal information on wildlife social contacts. In this study, we investigated the effects of raccoon contact patterns on rabies spread using network modeling.2. Raccoons (Procyon lotor) play an important role in the maintenance of rabies in the US.It is crucial to understand how contact patterns influence the spread of rabies in raccoon populations in order to design effective control measures and to prevent transmission to human populations and other animals.3. We constructed a dynamic system of contact networks based on empirical data from proximity logging collars on a wild suburban raccoon population, and then simulated rabies spread across these networks. Our contact networks incorporated the number and duration of raccoon interactions. We included differences in contacts according to sex and season, and both short-term acquaintances and long-term associations. Raccoons may display different behaviors when infectious, including aggression (furious behavior) and impaired mobility (dumb behavior); the network model was used to assess the impact of potential behavioral changes of rabid raccoons. We also tested the effectiveness of different vaccination coverage levels on rabies spread.4. Our results demonstrate that when rabies enters a suburban raccoon population, the likelihood of a disease outbreak affecting the majority of the population is high. Both the magnitude of rabies outbreaks and the speed of rabies spread depend strongly on the time of year that rabies is introduced into the population. When there is a combination of Accepted ArticleThis article is protected by copyright. All rights reserved. dumb and furious behaviors in the rabid raccoon population, there are similar outbreak sizes and speed of spread to when there are no behavioral changes due to rabies infection.5. By incorporating detailed data describing the variation in raccoon contact rates into a network modeling approach, we were able to show that suburban raccoon populations are highly susceptible to rabies outbreaks, that the risk of large outbreaks varies seasonally, and that current vaccination target levels may be inadequate to prevent the spread of rabies within these populations. Our findings thus provide new insights into rabies dynamics in raccoon populations and have important implications for disease control.
Some grass species mount a defensive response to grazing by increasing their rate of uptake of silica from the soil and depositing it as abrasive granules in their leaves. Increased plant silica levels reduce food quality for herbivores that feed on these grasses. Here we provide empirical evidence that a principal food species of an herbivorous rodent exhibits a delayed defensive response to grazing by increasing silica concentrations, and present theoretical modelling that predicts that such a response alone could lead to the population cycles observed in some herbivore populations. Experiments performed under greenhouse conditions revealed that the rate of deposition of silica defences in the grass Deschampsia caespitosa is a time-lagged, nonlinear function of grazing intensity and that, upon cessation of grazing, these defences take around one year to decay to within 5 % of control levels. Simple coupled grass-herbivore population models incorporating this functional response, and parameterised with empirical data, consistently predict population cycles for a wide range of realistic parameter values for a (Microtus) vole-grass system. Our results support the hypothesis that induced silica defences have the potential to strongly affect the population dynamics of their herbivores. Specifically, the feedback response we observed could be a driving mechanism behind the observed population cycles in graminivorous herbivores in cases where grazing levels in the field become sufficiently large and sustained to trigger an induced silica defence response.
Influenza A virus infections are widespread in swine herds across the world. Influenza negatively affects swine health and production, and represents a significant threat to public health due to the risk of zoonotic infections. Swine herds can act as reservoirs for potentially pandemic influenza strains. In this study, we develop mathematical models based on experimental data, representing typical breeding and wean-to-finish swine farms. These models are used to explore and describe the dynamics of influenza infection at the farm level, which are at present not well understood. In addition, we use the models to assess the effectiveness of vaccination strategies currently employed by swine producers, testing both homologous and heterologous vaccines. An important finding is that following an influenza outbreak in a breeding herd, our model predicts a persistently high level of infectious piglets. Sensitivity analysis indicates that this finding is robust to changes in both transmission rates and farm size. Vaccination does not eliminate influenza throughout the breeding farm population. In the wean-to-finish herd, influenza infection may persist in the population only if recovered individuals become susceptible to infection again. A homologous vaccine administered to the entire wean-to-finish population after the loss of maternal antibodies eliminates influenza, but a vaccine that only induces partial protection (heterologous vaccine) has little effect on influenza infection levels. Our results have important implications for the control of influenza in swine herds, which is crucial in order to reduce both losses for swine producers and the risk to public health.
Summary The timing of raccoon rabies outbreaks in the eastern USA is non‐random and often exhibits a seasonal peak. While fluctuations in disease transmission can be driven by seasonal changes in animal population dynamics, behaviour and physiology, it is still unclear which causal factors lead to seasonal outbreaks of raccoon rabies. We used dynamic network modelling to test which of three seasonally changing factors are most likely responsible for raccoon rabies outbreaks: (i) birth pulses, (ii) changes in social network structure and (iii) changes in social contact duration. In contrast to previous predictions, we found that a change in social contact duration was the single most important driver of rabies seasonality. More specifically, co‐denning for thermoregulation during the winter increases the amount of time individuals spend in close contact, which in turn should lead to peaks in rabies transmission during the winter. Increased time spent in close proximity during cold winter months has implications for seasonal disease patterns in raccoon populations across a latitudinal gradient, as well as potentially being important for pathogens transmitted by close contact in other wildlife hosts. Synthesis and applications. By incorporating detailed empirical data describing variation in raccoon contacts into a network modelling framework, it is possible to determine the likely causal mechanisms driving seasonal disease patterns. This can be crucial information for wildlife and public health officials implementing wildlife disease control programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.