The SI × SC rule explains many of the compatibility relations in the tomato clade, but exceptions occur with more recently evolved SC species and accessions, revealing differences in strength of both pistil and pollen IRBs.
Loss-of-function mutations in CUL1 and SLF-23 likely became fixed relatively late during SI to SC transitions, after loss of pistil SI function. Mutations in CUL1 establish unilateral incompatibility with SI populations and strengthen reproductive isolation. Point mutations common to northern and southern SC biotypes likely derive from shared ancestral variants found in more central SI populations.
Domestication Syndrome in Caimito (Chrysophyllum cainitoL.): Fruit and Seed Characteristics: The process of domestication is understudied and poorly known for many tropical fruit tree crops. The star apple or caimito tree (Chrysophyllum cainito L., Sapotaceae) is cultivated throughout the New World tropics for its edible fruits. We studied this species in central Panama, where it grows wild in tropical moist forests and is also commonly cultivated in backyard gardens. Using fruits collected over two harvest seasons, we tested the hypothesis that cultivated individuals of C. cainito show distinctive fruit and seed characteristics associated with domestication relative to wild types. We found that cultivated fruits were significantly and substantially larger and allocated more to pulp and less to exocarp than wild fruits. The pulp of cultivated fruits was less acidic; also, the pulp had lower concentrations of phenolics and higher concentrations of sugar. The seeds were larger and more numerous and were less defended with phenolics in cultivated than in wild fruits. Discriminant Analysis showed that, among the many significant differences, fruit size and sugar concentration drove the great majority of the variance distinguishing wild from cultivated classes. Variance of pulp phenolics among individuals was significantly higher among wild trees than among cultivated trees, while variance of fruit mass and seed number was significantly higher among cultivated trees. Most traits showed strong correlations between years. Overall, we found a clear signature of a domestication syndrome in the fruits of cultivated caimito in Panama.
Mating system transitions in the Arcanum group have occurred via both pistil loss-of-function and pollen gain-of-function SC mutations. Mutations common to and must have arisen in a common ancestor, possibly to the entire tomato clade, then became fixed in different lineages after loss of pistil-side SI function.
Chrysophyllum cainito is most closely related to a clade containing Central and South American C. argenteum, including subsp. panamense. We hypothesize that caimito is native to southern Mesoamerica and was domesticated from multiple wild populations in Panama. Subsequent migration into northern Mesoamerica and the Antilles was mediated by human cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.