Let E/Q be a real quadratic field and π0 a cuspidal, irreducible, automorphic representation of GL(2, AE) with trivial central character and infinity type (2, 2n + 2) for some non-negative integer n. We show that there exists a non-zero Siegel paramodular newform F : H2 → C with weight, level, Hecke eigenvalues, epsilon factor and L-function determined explicitly by π0. We tabulate these invariants in terms of those of π0 for every prime p of Q.
In this paper we first prove the main conjecture for imaginary quadratic fields for all prime numbers p, improving slightly earlier results by Rubin. From this we deduce the equivariant main conjecture in the case that a certain µ-invariant vanishes. For prime numbers p ∤ 6 which split in K, we can prove the equivariant main conjecture using a theorem by Gillard.
Let F be a non-archimedean local field of characteristic zero, let (π, V ) be an irreducible, admissible representation of GSp(4, F ) with trivial central character, and let χ be a quadratic character of F × with conductor c(χ) > 1. We define a twisting operator Tχ from paramodular vectors for π of level n to paramodular vectors for χ ⊗ π of level max(n + 2c(χ), 4c(χ)), and prove that this operator has properties analogous to the well-known GL(2) twisting operator.
Early public health strategies to prevent the spread of COVID-19 in the United States relied on non-pharmaceutical interventions (NPIs) as vaccines and therapeutic treatments were not yet available. Implementation of NPIs, primarily social distancing and mask wearing, varied widely between communities within the US due to variable government mandates, as well as differences in attitudes and opinions. To understand the interplay of trust, risk perception, behavioral intention, and disease burden, we developed a survey instrument to study attitudes concerning COVID-19 and pandemic behavioral change in three states: Idaho, Texas, and Vermont. We designed our survey (n = 1034) to detect whether these relationships were significantly different in rural populations. The best fitting structural equation models show that trust indirectly affects protective pandemic behaviors via health and economic risk perception. We explore two different variations of this social cognitive model: the first assumes behavioral intention affects future disease burden while the second assumes that observed disease burden affects behavioral intention. In our models we include several exogenous variables to control for demographic and geographic effects. Notably, political ideology is the only exogenous variable which significantly affects all aspects of the social cognitive model (trust, risk perception, and behavioral intention). While there is a direct negative effect associated with rurality on disease burden, likely due to the protective effect of low population density in the early pandemic waves, we found a marginally significant, positive, indirect effect of rurality on disease burden via decreased trust (p = 0.095). This trust deficit creates additional vulnerabilities to COVID-19 in rural communities which also have reduced healthcare capacity. Increasing trust by methods such as in-group messaging could potentially remove some of the disparities inferred by our models and increase NPI effectiveness.
Early public health strategies to prevent the spread of COVID-19 in the United States relied on non-pharmaceutical interventions (NPIs) as vaccines and therapeutic treatments were not yet available. Implementation of NPIs, primarily social distancing and mask wearing, varied widely between communities within the US due to variable government mandates, as well as differences in attitudes and opinions. To understand the interplay of trust, risk perception, behavioral intention, and disease burden, we developed a survey instrument to study attitudes concerning COVID-19 and pandemic behavioral change in three states: Idaho, Texas, and Vermont. We designed our survey (n = 1034) to detect whether these relationships were significantly different in rural populations. The best fitting structural equation models show that trust indirectly affects protective pandemic behaviors via health and economic risk perception. We explore two different variations of this social cognitive model: the first assumes behavioral intention affects future disease burden while the second assumes that observed disease burden affects behavioral intention. In our models we include several exogenous variables to control for demographic and geographic effects. Notably, political ideology is the only exogenous variable which significantly affects all aspects of the social cognitive model (trust, risk perception, and behavioral intention). While there is a direct negative effect associated with rurality on disease burden, likely due to the protective effect of low population density in the early pandemic waves, we found a marginally significant, positive, indirect effect of rurality on disease burden via decreased trust (p = 0.095). This trust deficit creates additional vulnerabilities to COVID-19 in rural communities which also have reduced healthcare capacity. Increasing trust by methods such as in-group messaging could potentially remove some of the disparities inferred by our models and increase NPI effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.