Characterizing time delays in molecular photoionization as a function of the ejected electron emission direction relative to the orientation of the molecule and the light polarization axis provides unprecedented insights into the attosecond dynamics induced by extreme ultraviolet or X-ray one-photon absorption, including the role of electronic correlation and continuum resonant states. Here, we report completely resolved experimental and computational angular dependence of single-photon ionization delays in NO molecules across a shape resonance, relying on synchrotron radiation and time-independent ab initio calculations. The angle-dependent time delay variations of few hundreds of attoseconds, resulting from the interference of the resonant and non-resonant contributions to the dynamics of the ejected electron, are well described using a multichannel Fano model where the time delay of the resonant component is angle-independent. Comparing these results with the same resonance computed in e-NO+ scattering highlights the connection of photoionization delays with Wigner scattering time delays.
Reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) is an established technique for studying time-delay in photoionization of atoms and molecules. It has been recently extended to angle-resolved studies, accessing diverse fingerprint observables of the attosecond photoemission dynamics within the bound-continuum and continuum–continuum transitions. In this work, we address the general form of the ISB(θ,τ) two-photon photoelectron angular distributions (PADs) associated to the RABBITT sideband signal, as a function of the emission angle θ, and the delay τ between the XUV attosecond pulse train and the infrared (IR) dressing field at play in the RABBITT scheme. Relying on the expansion in Legendre polynomials, the PAD is synthesized in terms of a reduced set of coefficients which fully describe both its static (τ-independent) and dynamic (τ-dependent) components and enables us to retrieve any observable characterizing the PAD. This unified framework streamlines the comparison between different experimental or theoretical data sets and emphasizes how some observables depend on the experimental conditions. Along with the modelled analysis, we report new results of angle-resolved RABBITT direct ionization of the np valence orbital of Ar(3p6) and Ne(2p6), employing electron-ion coincidence momentum spectroscopy at the new Attolab facility. In this case, the nine coefficients synthesizing the PAD are further linked to the magnitude and phase of the transition dipole matrix elements, providing a fundamental test of theoretical predictions. Similarities and differences are found between Ar and Ne in the explored low energy region, up to 20 eV above the ionization threshold, where the electron dynamics is most sensitive to electronic correlation. Further interpretation of these results would benefit from a comparison with advanced many-body theoretical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.