In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca 2+ spikes through alterations in Ca 2+ , cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca 2+ spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca 2+ spike frequency by stimulating internal Ca 2+ release and Ca 2+ influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca 2+ spike frequency and Ca 2+, cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication.abnormal neuronal migration | congenital methylmercury poisoning
The role of genetic inheritance in brain development has been well characterized, but little is known about the contributions of natural environmental stimuli, such as the effect of light-dark cycles, to brain development. In this study, we determined the role of light stimuli in neuronal cell migration to elucidate how environmental factors regulate brain development. We show that in early postnatal mouse cerebella, granule cell migration accelerates during light cycles and decelerates during dark cycles. Furthermore, cerebellar levels of insulin-like growth factor 1 (IGF-1) are high during light cycles and low during dark cycles. There are causal relationships between light-dark cycles, speed of granule cell migration, and cerebellar IGF-1 levels. First, changes in lightdark cycles result in corresponding changes in the fluctuations of both speed of granule cell migration and cerebellar IGF-1 levels. Second, in vitro studies indicate that exogenous IGF-1 accelerates the migration of isolated granule cells through the activation of IGF-1 receptors. Third, in vivo studies reveal that inhibiting the IGF-1 receptors decelerates granule cell migration during light cycles (high IGF-1 levels) but does not alter migration during dark cycles (low IGF-1 levels). In contrast, stimulating the IGF-1 receptors accelerates granule cell migration during dark cycles (low IGF-1 levels) but does not alter migration during light cycles (high IGF-1 levels). These results suggest that during early postnatal development light stimuli control granule cell migration by altering the activity of IGF-1 receptors through modification of cerebellar IGF-1 levels. cerebellar granule cells | light stimulation
In the developing brain, immature neurons migrate from their sites of origin to their final destination, where they reside for the rest of their lives. This active movement of immature neurons is essential for the formation of normal neuronal cytoarchitecture and proper differentiation. Deficits in migration result in the abnormal development of the brain, leading to a variety of neurological disorders. A myriad of extracellular guidance molecules and intracellular effector molecules is involved in controlling the migration of immature neurons in a cell type, cortical layer and birth-date-specific manner. To date, little is known about how extracellular guidance molecules transfer their information to the intracellular effector molecules, which regulate the migration of immature neurons. In this article, to fill the gap between extracellular guidance molecules and intracellular effector molecules, using the migration of cerebellar granule cells as a model system of neuronal cell migration, we explore the role of second messenger signaling (specifically Ca(2+) and cyclic nucleotide signaling) in the regulation of neuronal cell migration. We will, first, describe the cortical layer-specific changes in granule cell migration. Second, we will discuss the roles of Ca(2+) and cyclic nucleotide signaling in controlling granule cell migration. Third, we will present recent studies showing the roles of Ca(2+) and cyclic nucleotide signaling in the deficits in granule cell migration in mouse models of fetal alcohol spectrum disorders and fetal Minamata disease.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.