Transgenerational plasticity (TGP) occurs when the environment experienced by a parent influences the development of their offspring. In this article, we develop a framework for understanding the mechanisms and multigenerational consequences of TGP. First, we conceptualize the mechanisms of TGP in the context of communication between parents (senders) and offspring (receivers) by dissecting the steps between an environmental cue received by a parent and its resulting effects on the phenotype of one or more future generations. Breaking down the problem in this way highlights the diversity of mechanisms likely to be involved in the process. Second, we review the literature on multigenerational effects and find that the documented patterns across generations are diverse. We categorize different multigenerational patterns and explore the proximate and ultimate mechanisms that can generate them. Throughout, we highlight opportunities for future work in this dynamic and integrative area of study.
The degree to which group members share reproduction is dictated by both within-group (e.g. group size and composition) and between-group (e.g. density and position of neighbours) characteristics. While many studies have investigated reproductive patterns within social groups, few have simultaneously explored how within-group and between-group social structure influence these patterns. Here, we investigated how group size and composition, along with territory density and location within the colony, influenced parentage in 36 wild groups of a colonial, cooperatively breeding fish Neolamprologus pulcher. Dominant males sired 76% of offspring in their group, whereas dominant females mothered 82% of offspring in their group. Subordinate reproduction was frequent, occurring in 47% of sampled groups. Subordinate males gained more paternity in groups located in high-density areas and in groups with many subordinate males. Dominant males and females in large groups and in groups with many reproductively mature subordinates had higher rates of parentage loss, but only at the colony edge. Our study provides, to our knowledge, the first comprehensive quantification of reproductive sharing among groups of wild N. pulcher, a model species for the study of cooperation and social behaviour. Further, we demonstrate that the frequency of extra-pair parentage differs across small social and spatial scales.
1. Intergenerational plasticity or parental effects-when parental environments alter the phenotype of future generations-can influence how organisms cope with environmental change. An intriguing, underexplored possibility is that sex-of both the parent and the offspring-plays an important role in driving the evolution of intergenerational plasticity in both adaptive and non-adaptive ways. 2. Here, we evaluate the potential for sex-specific parental effects in a freshwater population of three-spined sticklebacks Gasterosteus aculeatus by independently and jointly manipulating maternal and paternal experiences and separately evaluating their phenotypic effects in sons versus daughters. We tested the adaptive hypothesis that daughters are more responsive to cues from their mother, whereas sons are more responsive to cues from their father. 3. We exposed mothers, fathers or both parents to visual cues of predation risk and measured offspring antipredator traits and brain gene expression. 4. Predator-exposed fathers produced sons that were more risk-prone, whereas predator-exposed mothers produced more anxious sons and daughters. Furthermore, maternal and paternal effects on offspring survival were non-additive: offspring with a predator-exposed father, but not two predator-exposed parents, had lower survival against live predators. There were also strong sex-specific effects on brain gene expression: exposing mothers versus fathers to predation risk activated different transcriptional profiles in their offspring, and sons and daughters strongly differed in the ways in which their brain gene expression profiles were influenced by parental experience. 5. We found little evidence to support the hypothesis that offspring prioritize their same-sex parent's experience. Parental effects varied with both the sex of the parent and the offspring in complicated and non-additive ways. Failing to account for these sex-specific patterns (e.g. by pooling sons and daughters) would have underestimated the magnitude of parental effects. Altogether, these results draw attention to the potential for sex to influence patterns of intergenerational plasticity and raise new questions about the interface between intergenerational plasticity and sex-specific selective pressures, sexual conflict and sexual selection.
1. Transgenerational plasticity (TGP) occurs when the environment encountered by one generation (F0) alters the phenotypes of one or more future generations (e.g. F1 and F2). Sex selective TGP, via specific lineages or to only male or female descendants, has been underexplored in natural systems, and may be adaptive if it allows past generations to fine-tune the phenotypes of future generations in response to sex-specific life-history strategies. 2. We sought to understand if exposing males to predation risk can influence grandoffspring via sperm in three-spined stickleback Gasterosteus aculeatus. We specifically tested the hypothesis that grandparental effects are transmitted in a sex-specific way down the male lineage, from paternal grandfathers to F2 males. 3. We reared F1 offspring of unexposed and predator-exposed F0 males under 'control' conditions and used them to generate F2s with control grandfathers, a predator-exposed maternal grandfather (i.e. predator-exposed F0 males to F1 daughters to F2s), a predator-exposed paternal grandfather (i.e. predator-exposed F0 males to F1 sons to F2s) or two predator-exposed grandfathers. We then assayed male and female F2s for a variety of traits related to antipredator defence. 4. We found little evidence that transgenerational effects were mediated to only male descendants via the paternal lineage. Instead, grandpaternal effects depended on lineage and were mediated largely across sexes, from F1 males to F2 females and from F1 females to F2 males. When their paternal grandfather was exposed to predation risk, female F2s were heavier and showed a reduced change in behaviour in response to a simulated predator attack relative to grandoffspring of control, unexposed grandparents. In contrast, male F2s showed reduced antipredator behaviour when their maternal grandfather was exposed to predation risk. However, these patterns were only evident when one grandfather, but not both grandfathers, was exposed to predation risk, suggesting the potential for non-additive interactions across lineages. 5. If sex-specific and lineage effects are common, then grandparental effects are likely underestimated in the literature. These results draw attention to the importance of sex-selective inheritance of environmental effects and raise new questions about the proximate and ultimate causes of selective transmission across generations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.