We show that two commonly occurring epidermal growth factor receptor (EGFR) somatic mutations, L858R and an in-frame deletion mutant, Del(746-750), exhibit distinct enzymatic properties relative to wild-type EGFR and are differentially sensitive to erlotinib. Kinetic analysis of the purified intracellular domains of EGFR L858R and EGFR Del(746-750) reveals that both mutants are active but exhibit a higher K M for ATP and a lower K i for erlotinib relative to wild-type receptor. When expressed in NR6 cells, a cell line that does not express EGFR or other ErbB receptors, both mutations are ligand dependent for receptor activation, can activate downstream EGFR signaling pathways, and promote cell cycle progression. As expected from the kinetic analysis, the EGFR Del(746-752) is more sensitive to erlotinib inhibition than the EGFR L858R mutant. Further characterization shows that these mutations promote ligand-dependent and anchorageindependent growth, and cells harboring these mutant receptors form tumors in immunocompromised mice. Analysis of tumor lysates reveals that the tumorigenicity of the mutant EGFR cell lines may be due to a differential pattern of mutant EGFR autophosphorylation as compared with wild-type receptor. Significant inhibition of tumor growth, in mice harboring wild-type EGFR receptors, is only observed at doses of erlotinib approaching the maximum tolerated dose for the mouse. In contrast, the growth of mutant tumors is inhibited by erlotinib treatment at approximately one third the maximum tolerated dose. These findings suggest that EGFR somatic mutations directly influence both erlotinib sensitivity and cellular transformation. (Cancer Res 2006; 66(16): 8163-71)
The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC 50 values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Ka, PI3Kb, PI3Kg, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K-AKT signaling.
OSI-930 is a novel inhibitor of the receptor tyrosine kinases Kit and kinase insert domain receptor (KDR), which is currently being evaluated in clinical studies. OSI-930 selectively inhibits Kit and KDR with similar potency in intact cells and also inhibits these targets in vivo following oral dosing. We have investigated the relationships between the potency observed in cell-based assays in vitro, the plasma exposure levels achieved following oral dosing, the time course of target inhibition in vivo, and antitumor activity of OSI-930 in tumor xenograft models. In the mutant Kit-expressing HMC-1 xenograft model, prolonged inhibition of Kit was achieved at oral doses between 10 and 50 mg/kg and this dose range was associated with antitumor activity. Similarly, prolonged inhibition of wild-type Kit in the NCI-H526 xenograft model was observed at oral doses of 100 to 200 mg/kg, which was the dose level associated with significant antitumor activity in this model as well as in the majority of other xenograft models tested. The data suggest that antitumor activity of OSI-930 in mouse xenograft models is observed at dose levels that maintain a significant level of inhibition of the molecular targets of OSI-930 for a prolonged period. Furthermore, pharmacokinetic evaluation of the plasma exposure levels of OSI-930 at these effective dose levels provides an estimate of the target plasma concentrations that may be required to achieve prolonged inhibition of Kit and KDR in humans and which would therefore be expected to yield a therapeutic benefit in future clinical evaluations of OSI-930.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.