Elucidating the key signal transduction pathways essential for both antipsychotic efficacy and side-effect profiles is essential for developing safer and more effective therapies. Recent work has highlighted noncanonical modes of dopamine D 2 receptor (D 2 R) signaling via β-arrestins as being important for the therapeutic actions of both antipsychotic and antimanic agents. We thus sought to create unique D 2 R agonists that display signaling bias via β-arrestinergic signaling. Through a robust diversity-oriented modification of the scaffold represented by aripiprazole (1), we discovered UNC9975 (2), UNC0006 (3), and UNC9994 (4) as unprecedented β-arrestin-biased D 2 R ligands. These compounds also represent unprecedented β-arrestin-biased ligands for a G i -coupled G proteincoupled receptor (GPCR). Significantly, UNC9975, UNC0006, and UNC9994 are simultaneously antagonists of G i -regulated cAMP production and partial agonists for D 2 R/β-arrestin-2 interactions. Importantly, UNC9975 displayed potent antipsychotic-like activity without inducing motoric side effects in inbred C57BL/6 mice in vivo. Genetic deletion of β-arrestin-2 simultaneously attenuated the antipsychotic actions of UNC9975 and transformed it into a typical antipsychotic drug with a high propensity to induce catalepsy. Similarly, the antipsychotic-like activity displayed by UNC9994, an extremely β-arrestin-biased D 2 R agonist, in wild-type mice was completely abolished in β-arrestin-2 knockout mice. Taken together, our results suggest that β-arrestin signaling and recruitment can be simultaneously a significant contributor to antipsychotic efficacy and protective against motoric side effects. These functionally selective, β-arrestin-biased D 2 R ligands represent valuable chemical probes for further investigations of D 2 R signaling in health and disease.functional selectivity | ligand bias G protein-coupled receptors (GPCRs) signal not only via canonical pathways involving heterotrimeric large G proteins, but also via noncanonical G protein-independent interactions with other signaling proteins including, most prominently, β-arrestins (1-4). The process by which GPCR ligands differentially modulate canonical and noncanonical signal transduction pathways is a phenomenon known as "functional selectivity" (5, 6). Such functionally selective ligands preferentially engage either canonical or noncanonical GPCR pathways (7,8). Clearly, the discovery of ligands with discrete functional selectivity profiles will be extremely useful for elucidating the key signal transduction pathways essential for both the therapeutic actions and the side effects of drugs (6). Understanding which signaling pathways contribute to antipsychotic efficacy and side effects, for instance, will in turn enable the design of better antipsychotic drug candidates and, ultimately, lead to safer and more effective therapies for patients. However, only a small number of functionally selective GPCR ligands have been reported to date (5-9). In addition to the paucity of such ligands,...
BackgroundNumerous studies have shown that long non-coding RNAs (lncRNAs) behave as a novel class of transcript during multiple cancer processes, such as cell proliferation, apoptosis, migration, and invasion. LINC00152 is located on chromosome 2p11.2, and has a transcript length of 828 nucleotides. The biological role of LINC00152 in LAD(lung adenocarcinoma) remains unknown.MethodsQuantitative reverse transcription PCR(qRT-PCR) was used to detect LINC00152 expression in 60 human LAD tissues and paired normal tissues. In vitro and in vivo studies showed the biological function of LINC00152 in tumour progression. RNA transcriptome sequencing technology was performed to identify the downstream suppressor IL24(interleukin 24) which was further examined by qRT-PCR, western bolt and rescue experiments. RNA immunoprecipitation (RIP), RNA pulldown, and Chromatin immunoprecipitation (ChIP) assays were carried out to reveal the interaction between LINC00152, EZH2 and IL24.ResultsLINC00152 expression was upregulated in 60 human LAD tissues and paired normal tissues. High levels of LINC00152 expression were correlated with advanced TNM stage, larger tumor size, and lymph node metastasis, as well as shorter survival time. Silencing of LINC00152 suppressed cell growth and induced cell apoptosis. LINC00152 knockdown altered the expression of many downstream genes, including IL24. LINC00152 could interact with EZH2 and inhibit IL24 transcription. Moreover, the ectopic expression of IL24 repressed cell proliferation and partly reversed LINC00152 overexpression-induced promotion of cell growth in LAD.ConclusionsOur study reveals an oncogenic role for LINC00152 in LAD tumorigenesis, suggesting that it could be used as a therapeutic target in LAD treatment.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0581-3) contains supplementary material, which is available to authorized users.
Hepatocellular carcinoma (HCC) is 1 of the leading causes of cancer-related deaths worldwide, yet the molecular genetics underlying this malignancy are still poorly understood. In our study, we applied statistical methods to correlate human HCC gene expression data obtained from complementary DNA (cDNA) microarrays and corresponding DNA copy number variation data obtained from array-based comparative genomic hybridization. We have thus identified 76 genes that are up-regulated and show frequent DNA copy number gain, and 37 genes that are down-regulated and show frequent DNA copy loss in human HCC samples. Among these down-regulated genes is Sprouty2 (Spry2), a known inhibitor of receptor tyrosine kinases. We investigated the potential role of Spry2 in HCC by expressing dominant negative Spry2 (Spry2Y55F) and activated -catenin (⌬N90--catenin) in the mouse liver through hydrodynamic injection and sleeping beauty-mediated somatic integration. When stably expressed in mouse hepatocytes, Spry2Y55F cooperates with ⌬N90--catenin to confer a neoplastic phenotype in mice. Tumor cells show high levels of expression of phospho-extracellular signal-regulated kinase (ERK), as well as deregulation of genes involved in cell proliferation, apoptosis, and angiogenesis. Conclusion: We identified a set of candidate oncogenes and tumor suppressor genes for human HCC. Our study provides evidence that inhibition of Spry activity cooperates with other oncogenes to promote liver cancer in mouse models, and Spry2 may function as a candidate tumor suppressor for HCC development in vivo. In addition, we demonstrate that the integration of genomic analysis and in vivo transfection is a powerful tool to identify genes that are important during hepatic carcinogenesis. ( Development of HCC is a multistep process. However, the molecular genetics and signaling pathways underlying hepatic carcinogenesis are still poorly understood. 2 Molecular events frequently observed in HCC include mutations in p53 and -catenin, and aberrant CpG island methylation of APC, E-cadherin, and p16. 2 Among them, mutations of -catenin occur in 15% to 30% of human HCCs. 3,4 These -catenin mutations tend to be point mutations or deletions at the N-terminus that lead to the stabilization of -catenin. This stabilized -catenin translocates into the nucleus and binds to the T-cell factor transcriptional factors to activate downstream genes. Another important pathway involved in HCC pathogenesis is the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. Mouse models have demonstrated that activated Ras (RasV12) alone is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.