Airway submucosal gland function is severely disrupted in cystic fibrosis (CF), as a result of genetic mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane Cl -channel. To identify other Cl -channel types that could potentially substitute for lost CFTR function in these cells, we investigated the functional and molecular expression of Cl -channels in Calu-3 cells, a human cell line model of the submucosal gland serous cell. Whole cell patch clamp recording from these cells identified outwardly rectified, pH-and calcium-sensitive Cl -currents that resemble those previously ascribed to ClC-K type chloride channels. Using reverse transcription -polymerase chain reaction, we identified expression of mRNA for ClC-2, ClC-3, ClC-4, ClC-5, ClC-6, ClC-7, ClC-Ka, and ClC-Kb, as well as the common ClC-K channel b subunit barttin. Western blotting confirmed that Calu-3 cells express both ClC-K and barttin protein. Thus, Calu-3 cells express multiple members of the ClC family of Cl -channels that, if also expressed in native submucosal gland serous cells within the CF lung, could perhaps act to partially substitute lost CFTR function. Furthermore, this work represents the first evidence for functional ClC-K chloride channel expression within the lung.
This study investigates the mechanisms involved in the regulatory volume decrease (RVD) in ZR-75-1 epithelial-derived human breast cancer cells. Cell volume changes were measured during osmotic shock using video imaging. In HEPES-buffered hypotonic solutions no RVD was observed; however, RVD was observed in HCO(3)(-)-buffered hypotonic solutions. Inhibition of RVD by 10 microM tamoxifen and 100 microM DIDS (inhibitors of volume-regulated anion channels; VRAC) and 2 mM TEA(+) (inhibitor of K(+) channels) indicates a role for these channels. In HCO(3)(-)-buffered Cl(-)-free solutions RVD was partially abolished indicating that HCO(3)(-) efflux can support RVD but also may have another role. Further experiments investigated whether HCO(3)(-) assists in the accumulation of Cl(-) via Cl(-)-HCO(3)(-) exchange. Regulatory volume increase (RVI) was also HCO(3)(-)-dependent and was inhibited by 500 microM DIDS and 10 microM 5-( N, N-dimethyl)-amiloride (DMA) indicating a role for coupled Cl(-)-HCO(3)(-) and Na(+)-H(+) exchange. Finally, in the presence of 10 microM DMA, RVD was partially inhibited providing further evidence for a role of Cl(-)-HCO(3)(-) exchange. Thus RVD in ZR-75-1 cells involves the activation of VRAC and K(+) channels. RVD is HCO(3)(-)-dependent and HCO(3)(-) efflux through VRAC appears to contribute directly to RVD. HCO(3)(-), however, also has another role in facilitating Cl(-) accumulation via Cl(-)-HCO(3)(-) exchange.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.