The p110δ subunit of phosphoinositide 3-kinase (PI(3)K) is selectively expressed in leukocytes and is critical for lymphocyte biology. Here we report three different germline, heterozygous, gain-of-function mutations in the PIK3CD gene encoding p110δ in fourteen patients from seven families. These patients presented with sinopulmonary infections, lymphadenopathy, nodular lymphoid hyperplasia and CMV and/or EBV viremia. Strikingly, naïve and central memory T cells were severely deficient, while senescent effector T cells were over-represented. In vitro, patient T cells exhibited increased phosphorylation of Akt and hyperactivation of mTOR, enhanced glucose uptake and terminal effector differentiation. Importantly, treatment with rapamycin to inhibit mTOR activity in vivo partially restored naïve T cells, largely rescued the in vitro T cell defects, and improved clinical course.
Generation of long-term antibody-mediated immunity depends on the germinal centre (GC) reaction, which requires cooperation between antigen-specific T and B lymphocytes. In the human X-linked lymphoproliferative disease and its gene-targeted mouse model, loss-of-function mutations in signalling lymphocyte activation molecule-associated protein (SAP, encoded by SH2D1a) cause a profound defect in GC formation by an as yet unknown mechanism. Using two-photon intravital imaging, here we show that SAP deficiency selectively impairs the ability of CD4+ T cells to stably interact with cognate B cells but not antigen-presenting dendritic cells. This selective defect results in a failure of antigen-specific B cells to receive adequate levels of contact-dependent T cell help to expand normally, despite sap−/− T cells exhibiting the known characteristics of otherwise competent helper T cells. Furthermore, lack of stable interactions with B cells renders sap−/− T cells unable to be efficiently recruited to and retained in a nascent GC to sustain the GC reaction. These results offer a compelling explanation for the GC defect due to SAP deficiency and provide novel insights into the bi-directional communication between cognate T and B cells in vivo.
BACKGROUND The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. METHODS We performed exome sequencing of DNA from biopsy samples obtained from patients with the Proteus syndrome and compared the resultant DNA sequences with those of unaffected tissues obtained from the same patients. We confirmed and extended an observed association, using a custom restriction-enzyme assay to analyze the DNA in 158 samples from 29 patients with the Proteus syndrome. We then assayed activation of the AKT protein in affected tissues, using phosphorylation-specific antibodies on Western blots. RESULTS Of 29 patients with the Proteus syndrome, 26 had a somatic activating mutation (c.49G→A, p.Glu17Lys) in the oncogene AKT1, encoding the AKT1 kinase, an enzyme known to mediate processes such as cell proliferation and apoptosis. Tissues and cell lines from patients with the Proteus syndrome harbored admixtures of mutant alleles that ranged from 1% to approximately 50%. Mutant cell lines showed greater AKT phosphorylation than did control cell lines. A pair of single-cell clones that were established from the same starting culture and differed with respect to their mutation status had different levels of AKT phosphorylation. CONCLUSIONS The Proteus syndrome is caused by a somatic activating mutation in AKT1, proving the hypothesis of somatic mosaicism and implicating activation of the PI3K–AKT pathway in the characteristic clinical findings of overgrowth and tumor susceptibility in this disorder. (Funded by the Intramural Research Program of the National Human Genome Research Institute.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.