Composites of wind speeds, equivalent potential temperature, mean sea level pressure, vertical velocity, and relative humidity have been produced for the 100 most intense extratropical cyclones in the Northern Hemisphere winter for the 40-yr ECMWF Re-Analysis (ERA-40) and the high resolution global environment model (HiGEM). Features of conceptual models of cyclone structure-the warm conveyor belt, cold conveyor belt, and dry intrusion-have been identified in the composites from ERA-40 and compared to HiGEM. Such features can be identified in the composite fields despite the smoothing that occurs in the compositing process. The surface features and the three-dimensional structure of the cyclones in HiGEM compare very well with those from ERA-40. The warm conveyor belt is identified in the temperature and wind fields as a mass of warm air undergoing moist isentropic uplift and is very similar in ERA-40 and HiGEM. The rate of ascent is lower in HiGEM, associated with a shallower slope of the moist isentropes in the warm sector. There are also differences in the relative humidity fields in the warm conveyor belt. In ERA-40, the high values of relative humidity are strongly associated with the moist isentropic uplift, whereas in HiGEM these are not so strongly associated. The cold conveyor belt is identified as rearward flowing air that undercuts the warm conveyor belt and produces a low-level jet, and is very similar in HiGEM and ERA-40. The dry intrusion is identified in the 500-hPa vertical velocity and relative humidity. The structure of the dry intrusion compares well between HiGEM and ERA-40 but the descent is weaker in HiGEM because of weaker alongisentrope flow behind the composite cyclone. HiGEM's ability to represent the key features of extratropical cyclone structure can give confidence in future predictions from this model.
[1] Atmospheric fronts are important for the day-to-day variability of weather in the midlatitudes, particularly during winter when extratropical storm-tracks are at their maximum intensity. Fronts are often associated with heavy rain, and strongly affect the local space-time distribution of rainfall. A recently developed objective front identification method that distinguishes between cold, warm and quasi-stationary fronts, is applied to reanalysis data and combined with a daily global gridded data set to investigate how precipitation around the globe is associated with atmospheric fronts. A large proportion (up to 90%) of rainfall in the major stormtrack regions is associated with fronts, particularly cold and warm fronts. Precipitation over the oceanic storm-tracks is mostly associated with cold fronts, while over the Northern Hemisphere continents precipitation is mainly associated with warm fronts. There are seasonal and regional variations in the proportion of precipitation associated with fronts.
[1] Extratropical cyclones and their associated frontal systems are well known to be related to heavy precipitation events. Here an objective method is used to directly link extreme precipitation events with atmospheric fronts, identified using European Centre for Medium-Range Weather Forecasts Interim Reanalysis data, to quantify the importance of fronts for precipitation extremes globally. In some parts of the major midlatitude storm track regions, over 90% of precipitation extremes are associated with fronts, with slightly more events associated with warm fronts than cold fronts. On average, 51% of global precipitation extremes are associated with fronts, with 75% in the midlatitudes and 31% in the tropics. A large proportion of extreme precipitation events occur in the presence of both a cyclone and a front, but remote fronts are responsible for many of the "front-only" events. The fronts producing extreme precipitation events are found to have up to 35% stronger frontal gradients than other fronts, potentially providing some improved forecasting capabilities for extreme precipitation events.
Changes to the Northern Hemisphere winter (December–February) extratropical storm tracks and cyclones in a warming climate are investigated. Two idealized climate change experiments with the High Resolution Global Environmental Model version 1.1 (HiGEM1.1), a doubled CO2 and a quadrupled CO2 experiment, are compared against a present-day control run. An objective feature tracking method is used and a focus is given to regional changes. The climatology of extratropical storm tracks from the control run is shown to be in good agreement with the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), while the frequency distribution of cyclone intensity also compares well. In both simulations the mean climate changes are generally consistent with the simulations of the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) models, with strongly enhanced surface warming at the winter pole and reduced lower-tropospheric warming over the North Atlantic Ocean associated with the slowdown of the meridional overturning circulation. The circulation changes in the North Atlantic are different between the two idealized simulations with different CO2 forcings. In the North Atlantic the storm tracks are influenced by the slowdown of the MOC, the enhanced surface polar warming, and the enhanced upper tropical-troposphere warming, giving a northeastward shift of the storm tracks in the 2 × CO2 experiment but no shift in the 4 × CO2 experiment. Over the Pacific, in the 2 × CO2 experiment, changes in the mean climate are associated with local temperature changes, while in the 4 × CO2 experiment the changes in the Pacific are impacted by the weakened tropical circulation. The storm-track changes are consistent with the shifts in the zonal wind. Total cyclone numbers are found to decrease over the Northern Hemisphere with increasing CO2 forcing. Changes in cyclone intensity are found using 850-hPa vorticity, mean sea level pressure, and 850-hPa winds. The intensity of the Northern Hemisphere cyclones is found to decrease relative to the control.
The representation of the winter and summer extratropical storm tracks in both hemispheres is evaluated in detail for the available models in phase 6 of the Coupled Model intercomparison Project (CMIP6). The state of the storm tracks from 1979 to 2014 is compared to that in ERA5 using a Lagrangian objective cyclone tracking algorithm. It is found that the main biases present in the previous generation of models (CMIP5) still persist, albeit to a lesser extent. The equatorward bias around the SH is much reduced and there appears to be some improvement in mean biases with the higher-resolution models, such as the zonal tilt of the North Atlantic storm track. Low-resolution models have a tendency to underestimate the frequency of high-intensity cyclones with all models simulating a peak intensity that is too low for cyclones in the SH. Explosively developing cyclones are underestimated across all ocean basins and in both hemispheres. In particular the models struggle to capture the rapid deepening required for these cyclones. For all measures, the CMIP6 models exhibit an overall improvement compared to the previous generation of CMIP5 models. In the NH most improvements can be attributed to increased horizontal resolution, whereas in the SH the impact of resolution is less apparent and any improvements are likely a result of improved model physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.