The gammadelta T-cell receptors (TCRs) are limited in their diversity, suggesting that their natural ligands may be few in number. Ligands for gammadeltaTCRs that have thus far been determined are predominantly of host rather than foreign origin. Correlations have been noted between the Vgamma and/or Vdelta genes a gammadelta T cell expresses and its functional role. The reason for these correlations is not yet known, but several different mechanisms are conceivable. One possibility is that interactions between particular TCR-V domains and ligands determine function or functional development. However, a recent study showed that at least for one ligand, receptor specificity is determined by the complementarity-determining region 3 (CDR3) component of the TCR-delta chain, regardless of the Vgamma and/or Vdelta. To determine what is required in the TCR for other specificities and to test whether recognition of certain ligands is connected to cell function, more gammadeltaTCR ligands must be defined. The use of recombinant soluble versions of gammadeltaTCRs appears to be a promising approach to finding new ligands, and recent results using this method are reviewed.
To evaluate the role of the TCR in the αβ/γδ lineage choice during human thymocyte development, molecular analyses of the TCRβ locus in γδ cells and the TCRγ and δ loci in αβ cells were undertaken. TCRβ variable gene segments remained largely in germline configuration in γδ cells, indicating that commitment to the γδ lineage occurred before complete TCRβ rearrangements in most cases. The few TCRβ rearrangements detected were primarily out-of-frame, suggesting that productive TCRβ rearrangements diverted cells away from the γδ lineage. In contrast, in αβ cells, the TCRγ locus was almost completely rearranged with a random productivity profile; the TCRδ locus contained primarily nonproductive rearrangements. Productive γ rearrangements were, however, depleted compared with preselected cells. Productive TCRγ and δ rearrangements rarely occurred in the same cell, suggesting that αβ cells developed from cells unable to produce a functional γδ TCR. Intracellular TCRβ expression correlated with the up-regulation of CD4 and concomitant down-regulation of CD34, and plateaued at the early double positive stage. Surprisingly, however, some early double positive thymocytes retained γδ potential in culture. We present a model for human thymopoiesis which includes γδ development as a default pathway, an instructional role for the TCR in the αβ/γδ lineage choice, and a prolonged developmental window for β selection and γδ lineage commitment. Aspects that differ from the mouse are the status of TCR gene rearrangements at the nonexpressed loci, the timing of β selection, and maintenance of γδ potential through the early double positive stage of development.
Rationale: Lymphocytic alveolitis in HIV-1-infected individuals is associated with multiple pulmonary complications and a poor prognosis. Although lymphocytic alveolitis has been associated with viremia and an increased number of CD8 1 T cells in the lung, its exact cause is unknown.Objectives: To determine if HIV-1-specific T cells are associated with lymphocytic alveolitis in HIV-1-infected individuals.Methods: Using blood and bronchoalveolar lavage (BAL) cells from normal control subjects and untreated HIV-1-infected individuals, we examined the frequency and functional capacity of HIV-1-specific T cells. Measurements and Main Results:We found that HIV-1-specific T cells were significantly elevated in the BAL compared with blood of HIV-1-infected individuals and strongly correlated with T-cell alveolitis. Expression of Ki67, a marker of in vivo proliferation, was significantly reduced on HIV-1-specific T cells in BAL compared with blood, suggesting a diminished proliferative capacity. In addition, HIV-1-specific CD4 1 and CD8 1 T cells in BAL had higher expression of programmed death 1 (PD-1) and lower cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression than those in the blood. A strong correlation between PD-1, but not CTLA-4, and HIV-1-specific T-cell proliferation was seen, and blockade of the PD-1/PD-L1 pathway augmented HIV-1-specific T-cell proliferation, suggesting that the PD-1 pathway was the main cause of reduced proliferation in the lung.Conclusions: These findings suggest that alveolitis associated with HIV-1 infection is caused by the recruitment of HIV-1-specific CD4 1 and CD8 1 T cells to the lung. These antigen-specific T cells display an impaired proliferative capacity that is caused by increased expression of PD-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.