Gully erosion of cultural sites in Grand Canyon National Park is an urgent management problem that has intensified in recent decades, potentially related to the effects of Glen Canyon Dam. We studied 25 gullies at nine sites in Grand Canyon over the 2002 monsoonerosion season to better understand the geomorphology of the gully erosion and the effectiveness of erosion-control structures (ECS) installed by the park under the direction of the Zuni Conservation Program. Field results indicate that Hortonian overland flow leads to concentrated flow in gullies and erosion focused at knickpoints along channels as well as at gully heads. Though groundcover type, soil shear strength and permeability vary systematically across catchments, gradient and, to a lesser degree, contributing drainage area seem to be the first-order controls on gully extent, location of new knickpoints, and ECS damage. The installed ECS do reduce erosion relative to reaches without them and initial data suggest woody checkdams are preferable to rock linings, but maintenance is essential because damaged structures can exacerbate erosion.Topographic data from intensive field surveys and detailed photogrammetry provide slopecontributing area data for gully heads that have a trend consistent with previous empirical and theoretical formulations from a variety of landscapes. The same scaling holds below gully heads for knickpoint and ECS topographic data, with threshold coefficients the lowest for gully heads, slightly higher for knickpoints, and notably higher for damaged ECS. These topographic thresholds were used with 10-cm digital elevation models to create simple predictive models for gully extent and structure damage. The model predictions accounted for the observed gullies but there are also many false-positives. Purely topographical models are probably inadequate at this scale and application, but models that also parameterize the variable soil properties across sites would be useful for predicting erosion problems and ECS failure.
This report presents initial results of a joint effort between geologists and archaeologists to evaluate the significance of various depositional processes and environments in the prehistoric formation and modern preservation of archaeological sites along the Colorado River corridor in Grand Canyon National Park. Stratigraphic investigations of the Palisades, Lower Comanche, and Arroyo Grande areas of Grand Canyon yield detailed information regarding the sedimentary history at these locations. Reconstruction of past depositional settings is critical to a thorough understanding of the geomorphic and stratigraphic evolution of these three archaeologically significant areas. This examination of past sedimentary environments allows the relative significance of fluvial, aeolian, debris-fan, and slope-wash sedimentary deposits to be identified at each site. In general the proportion of fluvial sediment (number and thickness of flood deposits) is shown to decrease away from the river, and locally derived sediment becomes more significant. Flood sequences often occur as 'couplets' that contain a fluvial deposit overlain by an interflood unit that reflects reworking of fluvial sediment at the land surface by wind and local runoff. Archaeological features are built on and buried by sediment of various depositional environments, implying a complex interaction between geologic and cultural history. Such field analysis, which combines geological and archaeological information and techniques, can provide a basis for future determination of the effects of Glen Canyon Dam operations on selected areas of the river corridor. This knowledge is essential to the development of preservation strategies for cultural resources in Grand Canyon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.