Using the photopigment melanopsin, intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light to drive circadian clock resetting and pupillary constriction. We now report that ipRGCs are more abundant and diverse than previously appreciated, project more widely within the brain, and can support spatial visual perception. A Cre-based melanopsin reporter mouse line revealed at least five subtypes of ipRGCs with distinct morphological and physiological characteristics. Collectively, these cells project beyond the known brain targets of ipRGCs to heavily innervate the superior colliculus and dorsal lateral geniculate nucleus, retinotopically-organized nuclei mediating object localization and discrimination. Mice lacking classical rod-cone photoreception, and thus entirely dependent on melanopsin for light detection, were able to discriminate grating stimuli from equiluminant gray, and had measurable visual acuity. Thus, non-classical retinal photoreception occurs within diverse cell types, and influences circuits and functions encompassing luminance as well as spatial information.
Rod and cone photoreceptors detect light and relay this information through a multisynaptic pathway to the brain via retinal ganglion cells (RGCs) 1 . These retinal outputs support not only pattern vision, but also non-image forming (NIF) functions, which include circadian photoentrainment and pupillary light reflex (PLR). In mammals, NIF functions are mediated by rods, cones and the melanopsincontaining intrinsically photosensitive retinal ganglion cells (ipRGCs) 2, 3 . Rod/cone photoreceptors and ipRGCs are complementary in signalling light intensity for NIF functions 4-12 . The ipRGCs, in addition to being directly photosensitive, also receive synaptic input from rod/cone networks 13, 14 . To determine how the ipRGCs relay rod/cone light information for both image and non-image forming functions, we genetically ablated ipRGCs in mice. Here we show that animals lacking ipRGCs retain pattern vision, but have deficits in both PLR and circadian photoentrainment that are more extensive than those observed in melanopsin knockouts 8,10,11 . The defects in PLR and photoentrainment resemble those observed in animals that lack phototransduction in all three †To whom correspondence should be addressed.
SUMMARY Transcriptional regulatory networks that control the morphologic and functional diversity of mammalian neurons are still largely undefined. Here we dissect the roles of the highly homologous POU-domain transcription factors Brn3a and Brn3b in retinal ganglion cell (RGC) development and function using conditional Brn3a and Brn3b alleles that permit the visualization of individual wild type or mutant cells. We show that Brn3a- and Brn3b-expressing RGCs exhibit overlapping but distinct dendritic stratifications and central projections. Deletion of Brn3a alters dendritic stratification and the ratio of monostratified: bistratified RGCs, with little or no change in central projections. In contrast, deletion of Brn3b leads to RGC transdifferentiation and loss, axon defects in the eye and brain, and defects in central projections that differentially compromise a variety of visually-driven behaviors. These findings reveal distinct roles for Brn3a and Brn3b in programming RGC diversity, and they illustrate the broad utility of germ-line methods for genetically manipulating and visualizing individual identified mammalian neurons.
BackgroundThe response to hypoxia in tissues is regulated by the heterodimeric transcription factor Hypoxia Inducible Factor-1 (HIF-1).Methodology/Principal FindingsWe have created a strain of mice with inducible cardiomyocyte-specific expression of a mutated, oxygen-stable, form of HIF-1α. Cardiac function steadily decreased with transgene expression, but recovered after the transgene was turned off. Using long-oligo microarrays, we identified 162 transcripts more than 3-fold dysregulated in these hearts after transgene expression. Among the down-regulated genes the transcript for SERCA was reduced 46% and the protein 92%. This led us to an evaluation of calcium flux that showed diminished reuptake of cytoplasmic calcium in myocytes from these hearts, suggesting a mechanism for cardiac dysfunction.Conclusions/SignificanceThese results provide a deeper understanding of transcriptional activity of HIF in the heart, and show that enhanced HIF-1 activity is sufficient to cause contractile dysfunction in the adult heart. HIF is stabilized in the myocardium of patients with ischemic cardiomyopathy, and our results suggest that HIF could be contributing directly to the contractile dysfunction in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.