Through integration of large-scale bacterial whole-genome sequencing and social-network analysis, we show that a socioenvironmental factor--most likely increased crack cocaine use--triggered the simultaneous expansion of two extant lineages of M. tuberculosis that was sustained by key members of a high-risk social network. Genotyping and contact tracing alone did not capture the true dynamics of the outbreak. (Funded by Genome British Columbia and others.).
Mycobacterium tuberculosis is successfully evolving antibiotic resistance, threatening attempts at tuberculosis epidemic control. Mechanisms of resistance, including the genetic changes favored by selection in resistant isolates, are incompletely understood. Using 116 newly and 7 previously sequenced M. tuberculosis genomes, we identified genomewide signatures of positive selection specific to the 47 resistant genomes. By searching for convergent evolution, the independent fixation of mutations at the same nucleotide site or gene, we recovered 100% of a set of known resistance markers. We also found evidence of positive selection in an additional 39 genomic regions in resistant isolates. These regions encode pathways of cell wall biosynthesis, transcriptional regulation and DNA repair. Mutations in these regions could directly confer resistance or compensate for fitness costs associated with resistance. Functional genetic analysis of mutations in one gene, ponA1, demonstrated an in vitro growth advantage in the presence of the drug rifampicin.
The recent Ebola and Zika epidemics demonstrate the need for the continuous surveillance, rapid diagnosis and real-time tracking of emerging infectious diseases. Fast, affordable sequencing of pathogen genomes - now a staple of the public health microbiology laboratory in well-resourced settings - can affect each of these areas. Coupling genomic diagnostics and epidemiology to innovative digital disease detection platforms raises the possibility of an open, global, digital pathogen surveillance system. When informed by a One Health approach, in which human, animal and environmental health are considered together, such a genomics-based system has profound potential to improve public health in settings lacking robust laboratory capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.