Summary Background Use of oral live-attenuated polio vaccines (OPV), and injected inactivated polio vaccines (IPV) has almost achieved global eradication of wild polio viruses. To address the goals of achieving and maintaining global eradication and minimising the risk of outbreaks of vaccine-derived polioviruses, we tested novel monovalent oral type-2 poliovirus (OPV2) vaccine candidates that are genetically more stable than existing OPVs, with a lower risk of reversion to neurovirulence. Our study represents the first in-human testing of these two novel OPV2 candidates. We aimed to evaluate the safety and immunogenicity of these vaccines, the presence and extent of faecal shedding, and the neurovirulence of shed virus. Methods In this double-blind, single-centre phase 1 trial, we isolated participants in a purpose-built containment facility at the University of Antwerp Hospital (Antwerp, Belgium), to minimise the risk of environmental release of the novel OPV2 candidates. Participants, who were recruited by local advertising, were adults (aged 18–50 years) in good health who had previously been vaccinated with IPV, and who would not have any contact with immunosuppressed or unvaccinated people for the duration of faecal shedding at the end of the study. The first participant randomly chose an envelope containing the name of a vaccine candidate, and this determined their allocation; the next 14 participants to be enrolled in the study were sequentially allocated to this group and received the same vaccine. The subsequent 15 participants enrolled after this group were allocated to receive the other vaccine. Participants and the study staff were masked to vaccine groups until the end of the study period. Participants each received a single dose of one vaccine candidate (candidate 1, S2/cre5/S15domV/rec1/hifi3; or candidate 2, S2/S15domV/CpG40), and they were monitored for adverse events, immune responses, and faecal shedding of the vaccine virus for 28 days. Shed virus isolates were tested for the genetic stability of attenuation. The primary outcomes were the incidence and type of serious and severe adverse events, the proportion of participants showing viral shedding in their stools, the time to cessation of viral shedding, the cell culture infective dose of shed virus in virus-positive stools, and a combined index of the prevalence, duration, and quantity of viral shedding in all participants. This study is registered with EudraCT, number 2017-000908-21 and ClinicalTrials.gov , number NCT03430349 . Findings Between May 22 and Aug 22, 2017, 48 volunteers were screened, of whom 15 (31%) volunteers were excluded for reasons relating to the inclusion or exclusion criteria, three (6%) volunteers were not treated because of restrictions to the number of participants in each group, and 30 (63%) volunteers were sequentially allocated to groups (15 participants per group). Both no...
Since 2012, the United States has experienced a biennial spike in pediatric acute flaccid myelitis (AFM). 1-6 Epidemiologic evidence suggests non-polio enteroviruses (EVs) are a potential etiology, yet EV RNA is rarely detected in cerebrospinal fluid (CSF). 2 We interrogated CSF from children with AFM (n=42) and pediatric other neurologic disease controls (n=58) for intrathecal anti-viral antibodies using a phage display library expressing 481,966 overlapping peptides derived from all known vertebrate and arboviruses (VirScan). We also performed metagenomic next-generation sequencing (mNGS) of AFM CSF RNA (n=20 cases), both unbiased and with targeted enrichment for EVs. Using VirScan, the only viral family significantly enriched by the CSF of AFM cases relative to controls was Picornaviridae, with the most enriched Picornaviridae peptides belonging to the genus Enterovirus (n=29/42 cases versus 4/58 controls). EV VP1 ELISA confirmed this finding (n=22/26 cases versus 7/50 controls). mNGS did not detect additional EV RNA. Despite rare detection of EV RNA, pan-viral serology identified frequently high levels of CSF EV-specific antibodies in AFM compared to controls, providing further evidence for a causal role of non-polio EVs in AFM.
SUMMARY Neurotropic viruses, including mammalian reovirus, must disseminate from an initial site of replication to the central nervous system (CNS), often binding multiple receptors to facilitate systemic spread. Reovirus engages junctional adhesion molecule-A (JAM-A) to disseminate hematogenously. However, JAM-A is dispensable for reovirus replication in the CNS. We demonstrate that reovirus binds Nogo receptor NgR1, a leucine-rich-repeat protein expressed in the CNS, to infect neurons. Expression of NgR1 confers reovirus binding and infection of non-susceptible cells. Incubating reovirus virions with soluble NgR1 neutralizes infectivity. Blocking NgR1 on transfected cells or primary cortical neurons abrogates reovirus infection. Concordantly, reovirus infection is ablated in primary cortical neurons derived from NgR1-null mice. Reovirus virions bind to soluble JAM-A and NgR1, while infectious disassembly intermediates (ISVPs) bind only to JAM-A. These results suggest that reovirus uses different capsid components to bind distinct cell-surface molecules, engaging independent receptors to facilitate spread and tropism.
Acute flaccid myelitis (AFM) has caused motor paralysis in >560 children in the United States since 2014. The temporal association of enterovirus (EV) outbreaks with increases in AFM cases and reports of fever, respiratory, or gastrointestinal illness prior to AFM in >90% of cases suggest a role for infectious agents. Cerebrospinal fluid (CSF) from 14 AFM and 5 non-AFM patients with central nervous system (CNS) diseases in 2018 were investigated by viral-capture high-throughput sequencing (VirCapSeq-VERT system). These CSF and serum samples, as well as multiple controls, were tested for antibodies to human EVs using peptide microarrays. EV RNA was confirmed in CSF from only 1 adult AFM case and 1 non-AFM case. In contrast, antibodies to EV peptides were present in CSF of 11 of 14 AFM patients (79%), significantly higher than controls, including non-AFM patients (1/5 [20%]), children with Kawasaki disease (0/10), and adults with non-AFM CNS diseases (2/11 [18%]) (P = 0.023, 0.0001, and 0.0028, respectively). Six of 14 CSF samples (43%) and 8 of 11 sera (73%) from AFM patients were immunoreactive to an EV-D68-specific peptide, whereas the three control groups were not immunoreactive in either CSF (0/5, 0/10, and 0/11; P = 0.008, 0.0003, and 0.035, respectively) or sera (0/2, 0/8, and 0/5; P = 0.139, 0.002, and 0.009, respectively). IMPORTANCE The presence in cerebrospinal fluid of antibodies to EV peptides at higher levels than non-AFM controls supports the plausibility of a link between EV infection and AFM that warrants further investigation and has the potential to lead to strategies for diagnosis and prevention of disease.
Background: Acute flaccid myelitis (AFM), a serious paralytic illness, was first recognized as a distinct condition in 2014, when cases were reported concurrent with a large U.S. outbreak of severe respiratory illness caused by enterovirus D-68 (EV-D68). Since 2014, nationwide outbreaks of AFM have occurred every 2 years in the United States; the cause for the recent change in the epidemiology of AFM in the United States, including the occurrence of outbreaks and a biennial periodicity since 2014, is under investigation. This report updates clinical, laboratory, and outcome data for cases reported to CDC during 2018.Methods: Clinical data and specimens from persons in the United States who met the clinical criterion for AFM (acute onset of flaccid limb weakness) with onset in 2018 were submitted to CDC for classification of the illnesses as confirmed, probable, or non-AFM cases. Enterovirus/rhinovirus (EV/RV) testing was performed on available specimens from persons meeting the clinical criterion. Descriptive analyses, laboratory results, and indicators of early recognition and reporting are summarized.Results: From January through December 2018, among 374 reported cases of AFM, 233 (62%) (from 41 states) were classified as confirmed, 26 (7%) as probable, and 115 (31%) as non-AFM cases. Median ages of patients with confirmed, probable, and non-AFM cases were 5.3, 2.9, and 8.8 years, respectively. Laboratory testing identified multiple EV/RV types, primarily in respiratory and stool specimens, in 44% of confirmed cases. Among confirmed cases, the interval from onset of limb weakness until specimen collection ranged from 2 to 7 days, depending on specimen type. Interval from onset of limb weakness until reporting to CDC during 2018 ranged from 18 to 36 days, with confirmed and probable cases reported earlier than non-AFM cases. Conclusion:Identification of risk factors leading to outbreaks of AFM remains a public health priority. Prompt recognition of signs and symptoms, early specimen collection, and complete and rapid reporting will expedite public health investigations and research studies to elucidate the recent epidemiology of AFM and subsequently inform treatment and prevention recommendations.Please note: An erratum has been published for this issue. To view the erratum, please click here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.