Locomotor activity and luteinizing hormone (LH) secretion in golden hamsters share a common circadian pacemaker in the suprachiasmatic nucleus (SCN), but the rhythms do not seem to share a common output pathway from the SCN. Locomotion is believed to be driven by humoral factor(s), whereas LH secretion may depend on specific ipsilateral neural efferents from the SCN to LH releasing hormone (LHRH)-containing neurons in the preoptic area. In this paper we provide the first functional evidence for such efferents in neurologically intact hamsters by exploiting a phenomenon known as "splitting" in constant light, in which circa-12 hr (approximately 12 hr) locomotor activity bouts reflect an antiphase oscillation of the left and right sides of the bilaterally paired SCN. In ovariectomized, estrogen-treated (OVX ϩ E 2) female hamsters, splitting is also known to include circa-12 hr LH secretory surges. Here we show that behaviorally "split" OVX ϩ E 2 females exhibit a marked left-right asymmetry in immunoreactive c-Fos expression in both SCN and activated LHRH neurons, with the percentage of LHRH ϩ /c-Fos ϩ double-labeled cells approximately fivefold higher on the side corresponding to the side of the SCN with higher c-Fos immunoreactivity. Our results suggest that splitting involves alternating left-and right-sided stimulation of LHRH neurons; under such circumstances, the functional activity of the neuroendocrine hypothalamus mirrors intrinsic side-to-side differences in SCN gene expression. The circadian regulation of reproductive activity depends on lateralized, point-to-point axonal projections rather than on diffusible factors.
An unusual property of the circadian timekeeping systems of animals is rhythm "splitting," in which a single daily period of physical activity (usually measured as wheel running) dissociates into two stably coupled components about 12 hours apart; this behavior has been ascribed to a clock composed of two circadian oscillators cycling in antiphase. We analyzed gene expression in the hypothalamic circadian clock, the suprachiasmatic nucleus (SCN), of behaviorally "split" hamsters housed in constant light. The results show that the two oscillators underlying the split condition correspond to the left and right sides of the bilaterally paired SCN.
Our results imply that the relative concentrations of folate species may be more critical than total folate in preventing preterm birth. An improved understanding of folate metabolism during pregnancy may lead to targeted intervention strategies that decrease the rate of preterm birth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.