Explaining the diversity of vertebrate sex-determining mechanisms ranging from genotypic (GSD) to temperature-dependent (TSD) remains a developmental and evolutionary conundrum. Using a phylogenetic framework, we explore the transcriptional evolution during gonadogenesis of several genes involved in sexual development, combining novel data from Chrysemys picta turtles (TSD) and published data from other TSD and GSD vertebrates. Our novel C. picta dataset underscores Sf1 and Wt1 as potential activators of the thermosensitive period and uncovered the first evidence of Dax1 involvement in male development in a TSD vertebrate. Contrasting transcriptional profiles revealed male-biased Wt1 expression in fish while monomorphic expression is found in tetrapods but absent in turtles. Sf1 expression appears highly labile with transitions among testicular, ovarian, and non-sex-specific gonadal formation patterns among and within lineages. Dax1's dual role in ovarian and testicular formation is found in fish and mammals but is dosage-sensitive exclusively in eutherian mammals due to its X-linkage in this group. Contrastingly, Sox9 male-biased and Aromatase female-biased expression appear ancestral and virtually conserved throughout vertebrates despite significant heterochronic changes in expression as other elements likely replaced their function in early gonadogenesis. Finally, research avenues are highlighted to further study the evolution of the regulatory network of sexual development. Developmental Dynamics 242:307-319,
Abstract. Habitat fragmentation often arises from human-induced alterations to the matrix that reduce or eliminate dispersal between habitat patches. Elimination of dispersal increases local extinction and decreases recolonization. These phenomena were observed in the eastern collared lizard (Crotaphytus collaris collaris), which lives in the mid-continental highland region of the Ozarks (Missouri, USA) on glades: habitats of exposed bedrock that form desert-like habitats imbedded in a woodland matrix. With the onset of woodland fire suppression, glade habitats degenerated and the woodland matrix was altered to create a strong barrier to dispersal. By 1980, lizard populations in the Ozarks were rapidly going extinct. In response to this decline, some glades were restored by clearing and burning. Starting in 1984, collared lizard populations were translocated onto these restored habitats. The translocated populations persisted but did not colonize nearby glades or disperse among one another. In 1994 prescribed woodland fires were initiated, which unleashed much dispersal and colonizing behavior. Dispersal was highly nonrandom by both intrinsic variables (age, gender) and extrinsic variables (overall demography, glade population sizes, glade areas, landscape features), resulting in different classes of lizards being dominant in creating demographic cohesiveness among glades, colonizing new glades on a mountain, and colonizing new mountain systems. A dramatic transition was documented from isolated fragments, to a nonequilibrium colonizing metapopulation, and finally to a stable metapopulation. This transition is characterized by the convergence of rates of extinction and recolonization and a major alteration of dispersal probabilities and pattern in going from the nonequilibrium to stable metapopulation states.
Vertebrate sexual fate is decided primarily by the individual’s genotype (GSD), by the environmental temperature during development (TSD), or both. Turtles exhibit TSD and GSD, making them ideal to study the evolution of sex determination. Here we analyze temperature-specific gonadal transcriptomes (RNA-sequencing validated by qPCR) of painted turtles (Chrysemys picta TSD) before and during the thermosensitive period, and at equivalent stages in soft-shell turtles (Apalone spinifera—GSD), to test whether TSD’s and GSD’s transcriptional circuitry is identical but deployed differently between mechanisms. Our data show that most elements of the mammalian urogenital network are active during turtle gonadogenesis, but their transcription is generally more thermoresponsive in TSD than GSD, and concordant with their sex-specific function in mammals [e.g., upregulation of Amh, Ar, Esr1, Fog2, Gata4, Igf1r, Insr, and Lhx9 at male-producing temperature, and of β-catenin, Foxl2, Aromatase (Cyp19a1), Fst, Nf-kb, Crabp2 at female-producing temperature in Chrysemys]. Notably, antagonistic elements in gonadogenesis (e.g., β-catenin and Insr) were thermosensitive only in TSD early-embryos. Cirbp showed warm-temperature upregulation in both turtles disputing its purported key TSD role. Genes that may convert thermal inputs into sex-specific development (e.g., signaling and hormonal pathways, RNA-binding and heat-shock) were differentially regulated. Jak-Stat, Nf-κB, retinoic-acid, Wnt, and Mapk-signaling (not Akt and Ras-signaling) potentially mediate TSD thermosensitivity. Numerous species-specific ncRNAs (including Xist) were differentially-expressed, mostly upregulated at colder temperatures, as were unannotated loci that constitute novel TSD candidates. Cirbp showed warm-temperature upregulation in both turtles. Consistent transcription between turtles and alligator revealed putatively-critical reptilian TSD elements for male (Sf1, Amh, Amhr2) and female (Crabp2 and Hspb1) gonadogenesis. In conclusion, while preliminary, our data helps illuminate the regulation and evolution of vertebrate sex determination, and contribute genomic resources to guide further research into this fundamental biological process.
Global climate is warming rapidly, threatening vertebrates with temperature-dependent sex determination (TSD) by disrupting sex ratios and other traits. Less understood are the effects of increased thermal fluctuations predicted to accompany climate change. Greater fluctuations could accelerate feminization of species that produce females under warmer conditions (further endangering TSD animals), or counter it (reducing extinction risk). Here we use novel experiments exposing eggs of Painted Turtles (Chrysemys picta) to replicated profiles recorded in field nests plus mathematically-modified profiles of similar shape but wider oscillations, and develop a new mathematical model for analysis. We show that broadening fluctuations around naturally male-producing (cooler) profiles feminizes developing embryos, whereas embryos from warmer profiles remain female or die. This occurs presumably because wider oscillations around cooler profiles expose embryos to very low temperatures that inhibit development, and to feminizing temperatures where most embryogenesis accrues. Likewise, embryos incubated under broader fluctuations around warmer profiles experience mostly feminizing temperatures, some dangerously high (which increase mortality), and fewer colder values that are insufficient to induce male development. Therefore, as thermal fluctuations escalate with global warming, the feminization of TSD turtle populations could accelerate, facilitating extinction by demographic collapse. Aggressive global CO2 mitigation scenarios (RCP2.6) could prevent these risks, while intermediate actions (RCP4.5 and RCP6.0 scenarios) yield moderate feminization, highlighting the peril that insufficient reductions of greenhouse gas emissions pose for TSD taxa. If our findings are generalizable, TSD squamates, tuatara, and crocodilians that produce males at warmer temperatures could suffer accelerated masculinization, underscoring the broad taxonomic threats of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.