Fisheries research involving surgical implantation of transmitters necessitates the use of methods that minimize transmitter loss and fish mortality and optimize healing of the incision. We evaluated the effects of three incision locations on transmitter loss, healing, survival, growth, and suture retention in juvenile Chinook salmon Oncorhynchus tshawytscha. The three incision locations were (1) on the linea alba (LA incision), (2) adjacent and parallel to the LA (muscle‐cutting [MC] incision), and (3) extending from the LA towards the dorsum at a 45° angle, between the parallel lines of myomeres (muscle‐sparing [MS] incision). A Juvenile Salmon Acoustic Telemetry System acoustic transmitter (0.44 g in air) and a passive integrated transponder tag (0.10 g in air) were implanted into each fish (total N = 936 fish). The fish were held at 12°C or 20°C and were examined weekly for 98 d. The progression of healing among incision locations and the variability in transmitter loss made it difficult to identify one incision location as the best choice. The LA incisions had a much smaller wound extent (area of visible subepidermal tissue) than MC and MS incisions during the first 28 d of the study. In both temperature treatments, apposition of incisions through day 14 was better for LA incisions than for MC and MS incisions. However, MC and MS incisions were less likely than LA incisions to reopen over time and thus were less likely to allow transmitter loss through the incision.
SummaryMany studies in fisheries research use acoustic and radio transmitters to track patterns in fish movements and estimate survival across populations. Currently, some researchers implant transmitters through an incision anterior to the pelvic girdle on the mid-ventral line (linea alba) of the fish to avoid bisecting muscle tissue. Others make an incision 2-10 mm lateral to and parallel to the linea alba to reduce disturbance of the incision site from the river bottom or tank. In the human medical literature, there is a growing trend in "muscle-sparing" incisions that follow the underlying muscle fibers, preserving muscle strength and integrity.In this study, conducted by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, we measured differences in survival and growth, incision openness, transmitter loss, wound healing, and erythema among abdominal incisions on the linea alba, lateral and parallel to the linea alba (muscle-cutting), and following the underlying muscle fibers (muscle-sparing). A total of 936 juvenile Chinook salmon were implanted with both Juvenile Salmon Acoustic Telemetry System transmitters (0.43 g dry) and passive integrated transponder tags. Fish were held at 12°C (n = 468) or 20°C (n = 468) and examined once weekly over 98 days.We found survival and growth did not differ among incision groups or between temperature treatment groups. Incisions on the linea alba had less openness than muscle-cutting and muscle-sparing incisions during the first 14 days when fish were held at 12°C or 20°C. Transmitter loss was not different among incision locations by day 28 when fish were held at 12°C or 20°C. However, incisions on the linea alba had greater transmitter loss than muscle-cutting and muscle-sparing incisions by day 98 at 12°C. Results for wound closure and erythema differed among temperature groups. Results from our study will be used to improve fish-tagging procedures for future studies using acoustic or radio transmitters.
Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels iii SummaryAt the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum salmon (Oncorhynchus keta) when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations.Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.