BackgroundA brief exposure to systemic hypoxia (i.e., hypoxic preconditioning; HPC) prior to transient middle cerebral artery occlusion (tMCAo) reduces infarct volume, blood-brain barrier disruption, and leukocyte migration. CCL2 (MCP-1), typically regarded as a leukocyte-derived pro-inflammatory chemokine, can also be directly upregulated by hypoxia-induced transcription. We hypothesized that such a hypoxia-induced upregulation of CCL2 is required for HPC-induced ischemic tolerance.MethodsAdult male SW/ND4, CCL2-null, and wild-type mice were used in these studies. Cortical CCL2/CCR2 message, protein, and cell-type specific immunoreactivity were determined following HPC (4 h, 8% O2) or room air control (21% O2) from 6 h through 2 weeks following HPC. Circulating leukocyte subsets were determined by multi-parameter flow cytometry in naïve mice and 12 h after HPC. CCL2-null and wild-type mice were exposed to HPC 2 days prior to tMCAo, with immunoneutralization of CCL2 during HPC achieved by a monoclonal CCL2 antibody.ResultsCortical CCL2 mRNA and protein expression peaked at 12 h after HPC (both p < 0.01), predominantly in cortical neurons, and returned to baseline by 2 days. A delayed cerebral endothelial CCL2 message expression (p < 0.05) occurred 2 days after HPC. The levels of circulating monocytes (p < 0.0001), T lymphocytes (p < 0.0001), and granulocytes were decreased 12 h after HPC, and those of B lymphocytes were increased (p < 0.0001), but the magnitude of these respective changes did not differ between wild-type and CCL2-null mice. HPC did decrease the number of circulating CCR2+ monocytes (p < 0.0001) in a CCL2-dependent manner, but immunohistochemical analyses at this 12 h timepoint indicated that this leukocyte subpopulation did not move into the CNS. While HPC reduced infarct volumes by 27% (p < 0.01) in wild-type mice, CCL2-null mice subjected to tMCAo were not protected by HPC. Moreover, administration of a CCL2 immunoneutralizing antibody prior to HPC completely blocked (p < 0.0001 vs. HPC-treated mice) the development of ischemic tolerance.ConclusionsThe early expression of CCL2 in neurons, the delayed expression of CCL2 in cerebral endothelial cells, and CCL2-mediated actions on circulating CCR2+ monocytes, appear to be required to establish ischemic tolerance to focal stroke in response to HPC, and thus represent a novel role for this chemokine in endogenous neurovascular protection.
Protection of the blood-brain barrier (BBB) is correlated with improved outcome in stroke. Sphingosine kinase (SphK)-directed production of sphingosine-1-phosphate, which we previously documented as being vital to preconditioning-induced stroke protection, mediates peripheral vascular integrity via junctional protein regulation. We used a hypoxic preconditioning (HPC) model in adult wild-type and SphK2-null mice to examine the isoform-specific role of SphK2 signaling for ischemic tolerance to transient middle cerebral artery occlusion and attendant BBB protection. Reductions in infarct volume and BBB permeability in HPC-treated mice were completely lost in SphK2-null mice. Hypoxic preconditioning-induced attenuation of postischemic BBB disruption in wild types, evidenced by reduced extravascular immunoglobulin G intensity, suggests direct protection of BBB integrity. Measurement of BBB junctional protein status in response to HPC revealed SphK2-dependent increases in triton-insoluble claudin-5 and VE-cadherin, which may serve to strengthen the BBB before stroke. Postischemic loss of VE-cadherin, occludin, and zona occludens-1 in SphK2-null mice with prior HPC suggests that SphK2-dependent protection of these adherens and tight junction proteins is compulsory for HPC to establish a vasculoprotective phenotype. Further elucidation of the mediators of this endogenous, HPC-activated lipid signaling pathway, and their role in protecting the ischemic BBB, may provide new therapeutic targets for cerebrovascular protection in stroke patients.
The induction of ischemic tolerance by preconditioning provides a platform to elucidate endogenous mechanisms of stroke protection. In these studies, we characterize the relationship between hypoxia-inducible factor (HIF), sphingosine kinase 2 (SphK2), and CCL2 in models of hypoxic or pharmacological preconditioning-induced ischemic tolerance. A genetics-based approach using SphK2- and CCL2-null mice showed both SphK2 and CCL2 to be necessary for the induction of ischemic tolerance following preconditioning with hypoxia, the hypoxia-mimetic cobalt chloride, or the sphingosine-1-phosphate (S1P) agonist FTY720. A pharmacologic approach confirmed the necessity of HIF signaling for all three preconditioning stimuli, and showed the SphK/S1P pathway to transduce tolerance via the S1P1 receptor. Additionally, our data suggest significant cross-talk between HIF and SphK2-produced S1P signaling, which together act to upregulate CCL2 expression. Overall, HIF, SphK, S1P, and CCL2 participate in a signaling cascade to induce the gene expression responsible for the stroke-tolerant phenotype established by hypoxic and FTY720 preconditioning. The identification of these common molecular mediators involved in signaling the genomic response to multiple preconditioning stimuli provides several targets for therapeutic manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.