A comparative (15)N-tracer study of nitrogen dynamics in headwater streams from biomes throughout North America demonstrates that streams exert control over nutrient exports to rivers, lakes, and estuaries. The most rapid uptake and transformation of inorganic nitrogen occurred in the smallest streams. Ammonium entering these streams was removed from the water within a few tens to hundreds of meters. Nitrate was also removed from stream water but traveled a distance 5 to 10 times as long, on average, as ammonium. Despite low ammonium concentration in stream water, nitrification rates were high, indicating that small streams are potentially important sources of atmospheric nitrous oxide. During seasons of high biological activity, the reaches of headwater streams typically export downstream less than half of the input of dissolved inorganic nitrogen from their watersheds.
Nitrous oxide (N 2 O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2 O via microbial denitrification that converts N to N 2 O and dinitrogen (N 2 ). The fraction of denitrified N that escapes as N 2 O rather than N 2 (i.e., the N 2 O yield) is an important determinant of how much N 2 O is produced by river networks, but little is known about the N 2 O yield in flowing waters. Here, we present the results of whole-stream 15 N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N 2 O at rates that increase with stream water nitrate (NO 3 − ) concentrations, but that <1% of denitrified N is converted to N 2 O. Unlike some previous studies, we found no relationship between the N 2 O yield and stream water NO 3 − . We suggest that increased stream NO 3 − loading stimulates denitrification and concomitant N 2 O production, but does not increase the N 2 O yield. In our study, most streams were sources of N 2 O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y −1 of anthropogenic N inputs to N 2 O in river networks, equivalent to 10% of the global anthropogenic N 2 O emission rate. This estimate of stream and river N 2 O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.H umans have more than doubled the availability of fixed nitrogen (N) in the biosphere, particularly through the production of N fertilizers and the cultivation of N-fixing crops (1). Increasing N availability is producing unintended environmental consequences including enhanced emissions of nitrous oxide (N 2 O), a potent greenhouse gas (2) and an important cause of stratospheric ozone destruction (3). The Intergovernmental Panel on Climate Change (IPCC) estimates that the microbial conversion of agriculturally derived N to N 2 O in soils and aquatic ecosystems is the largest source of anthropogenic N 2 O to the atmosphere (2). The production of N 2 O in agricultural soils has been the focus of intense investigation (i.e., >1,000 published studies) and is a relatively well constrained component of the N 2 O budget (4). However, emissions of anthropogenic N 2 O from streams, rivers, and estuaries have received much less attention and remain a major source of uncertainty in the global anthropogenic N 2 O budget.Microbial denitrification is a large source of N 2 O emissions in terrestrial and aquatic ecosystems. Most microbial denitrification is a form of anaerobic respiration in which nitrate (NO 3 − , the dominant form of inorganic N) is converted to dinitrogen (N 2 ) and N 2 O gases (5). The proportion of denitrified NO 3 − that is converted to N 2 O rather than N 2 (h...
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.