Many environmental processes exhibit weakening spatial dependence as events become more extreme. Well-known limiting models, such as max-stable or generalized Pareto processes, cannot capture this, which can lead to a preference for models that exhibit a property known as asymptotic independence. However, weakening dependence does not automatically imply asymptotic independence, and whether the process is truly asymptotically (in)dependent is usually far from clear. The distinction is key as it can have a large impact upon extrapolation, i.e., the estimated probabilities of events more extreme than those observed. In this work, we present a single spatial model that is able to capture both dependence classes in a parsimonious manner, and with a smooth transition between the two cases. The model covers a wide range of possibilities from asymptotic independence through to complete dependence, and permits weakening dependence of extremes even under asymptotic dependence. Censored likelihood-based inference for the implied copula is feasible in moderate dimensions due to closed-form margins. The model is applied to oceanographic datasets with ambiguous true limiting dependence structure.
SUMMARYMax-stable processes arise as the only possible nontrivial limits for maxima of affinely normalized identically distributed stochastic processes, and thus form an important class of models for the extreme values of spatial processes. Until recently, inference for max-stable processes has been restricted to the use of pairwise composite likelihoods, due to intractability of higherdimensional distributions. In this work we consider random fields that are in the domain of attraction of a widely used class of max-stable processes, namely those constructed via manipulation of log-Gaussian random functions. For this class, we exploit limiting d-dimensional multivariate Poisson process intensities of the underlying process for inference on all d-vectors exceeding a high marginal threshold in at least one component, employing a censoring scheme to incorporate information below the marginal threshold. We also consider the d-dimensional distributions for the equivalent max-stable process, and perform full likelihood inference by exploiting the methods of Stephenson & Tawn (2005), where information on the occurrence times of extreme events is shown to dramatically simplify the likelihood. The Stephenson-Tawn likelihood is in fact simply a special case of the censored Poisson process likelihood. We assess the improvements in inference from both methods over pairwise likelihood methodology by simulation.
Existing theory for multivariate extreme values focuses upon characterizations of the distributional tails when all components of a random vector, standardized to identical margins, grow at the same rate. In this paper, we consider the effect of allowing the components to grow at different rates, and characterize the link between these marginal growth rates and the multivariate tail probability decay rate. Our approach leads to a whole class of univariate regular variation conditions, in place of the single but multivariate regular variation conditions that underpin the current theories. These conditions are indexed by a homogeneous function and an angular dependence function, which, for asymptotically independent random vectors, mirror the role played by the exponent measure and Pickands' dependence function in classical multivariate extremes. We additionally offer an inferential approach to joint survivor probability estimation. The key feature of our methodology is that extreme set probabilities can be estimated by extrapolating upon rays emanating from the origin when the margins of the variables are exponential. This offers an appreciable improvement over existing techniques where extrapolation in exponential margins is upon lines parallel to the diagonal.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ471 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Different dependence scenarios can arise in multivariate extremes, entailing careful selection of an appropriate class of models. In bivariate extremes, the variables are either asymptotically dependent or are asymptotically independent. Most available statistical models suit one or other of these cases, but not both, resulting in a stage in the inference that is unaccounted for but can substantially impact subsequent extrapolation. Existing modelling solutions to this problem are either applicable only on subdomains or appeal to multiple limit theories. We introduce a unified representation for bivariate extremes that encompasses a wide variety of dependence scenarios and applies when at least one variable is large. Our representation motivates a parametric model that encompasses both dependence classes. We implement a simple version of this model and show that it performs well in a range of settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.