Background & Aims Very early onset inflammatory bowel diseases (VEOIBD), including infant disorders, are a diverse group of diseases found in children less than 6 years of age. They have been associated with several gene variants. We aimed to identify genes that cause VEOIBD. Methods We performed whole-exome sequencing of DNA from 1 infants with severe enterocolitis and her parents. Candidate gene mutations were validated in 40 pediatric patients and functional studies were carried out using intestinal samples and human intestinal cell lines. Results We identified compound heterozygote mutations in the tetratricopeptide repeat domain 7 (TTC7A) gene in an infant from non-consanguineous parents with severe exfoliative apoptotic enterocolitis; we also detected the mutations in 2 unrelated families, each with 2 affected siblings. TTC7A interacts with EFR3 homolog B (EFR3B) to regulate phosphatidylinositol 4-kinase (PI4KA) at the plasma membrane. Functional studies demonstrated that TTC7A is expressed in human enterocytes. The mutations we identified in TTC7A result in either mislocalization or reduced expression of TTC7A. PI4KA was found to co-immunoprecipitate with TTC7A; the identified TTC7A mutations reduced this binding. Knockdown of TTC7A in human intestinal-like cell lines reduced their adhesion, increased apoptosis, and decreased production of phosphatidylinositol 4-phosphate. Conclusion In a genetic analysis, we identified loss of function mutations in TTC7A in 5 infants with VEOIBD. Functional studies demonstrated that the mutations cause defects in enterocytes and T cells that lead to severe apoptotic enterocolitis. Defects in the PI4KA–TTC7A–EFR3B pathway are involved in the pathogenesis of VEOIBD.
Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use.
Glucose-6-phosphate dehydrogenase (G6PD), the first enzyme of the pentose phosphate pathway, is the principal intracellular source of NADPH. NADPH is utilized as a cofactor by vascular endothelial cell nitric-oxide synthase (eNOS) to generate nitric oxide (NO ⅐ ). To determine whether G6PD modulates NO ⅐ -mediated angiogenesis, we decreased G6PD expression in bovine aortic endothelial cells using an antisense oligodeoxynucleotide to G6PD or increased G6PD expression by adenoviral gene transfer, and we examined vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation, migration, and capillary-like tube formation. Deficient G6PD activity was associated with a significant decrease in endothelial cell proliferation, migration, and tube formation, whereas increased G6PD activity promoted these processes. VEGF-stimulated eNOS activity and NO ⅐ production were decreased significantly in endothelial cells with deficient G6PD activity and enhanced in G6PD-overexpressing cells. In addition, G6PD-deficient cells demonstrated decreased tyrosine phosphorylation of the VEGF receptor Flk-1/ KDR, Akt, and eNOS compared with cells with normal G6PD activity, whereas overexpression of G6PD enhanced phosphorylation of Flk-1/KDR, Akt, and eNOS. In the Pretsch mouse, a murine model of G6PD deficiency, vessel outgrowth from thoracic aorta segments was impaired compared with C3H wild-type mice. In an in vivo Matrigel angiogenesis assay, cell migration into the plugs was inhibited significantly in G6PD-deficient mice compared with wild-type mice, and gene transfer of G6PD restored the wild-type phenotype in G6PD-deficient mice. These findings demonstrate that G6PD modulates angiogenesis and may represent a novel angiogenic regulator.
Despite an extensive literature on the links between childhood sexual abuse (CSA) and posttraumatic stress disorder (PTSD), our knowledge on the effects of gender in relation to the risks for sexual victimization and subsequent PTSD is limited. We review current knowledge of gender differences in prevalence of CSA and the role of gender in subsequent development of child and adolescent PTSD with specific attention to rates, phenomenology, biological correlates, and risk factors. Despite the heavy bias toward female representation in studies, the literature supports increased rates of CSA and heightened vulnerability to PTSD in girls, as well as possible gender differences in the biological correlates and psychiatric sequelae of CSA. Further work is needed to explore the mechanisms that underlie these differences.
The transcription of genes located in subtelomeric regions of yeast chromosomes is repressed relative to the rest of the genome. This repression requires wild-type nucleosome levels but not the telomere silencing factors Sir2, Sir3, Sir4, and Rap1. Subtelomeric heterochromatin is characterized by the absence of acetylation or methylation of histone H3 lysine residues, but it is not known whether histone H3 hypoacetylation or hypomethylation is a prerequisite for the establishment of subtelomeric heterochromatin. We have systematically mutated the N-terminal tails of histone H3 and H4 in Saccharomyces cerevisiae and characterized the effects each mutant has on genome-wide expression. Our results show that subtelomeric transcriptional repression is dependent on the histone H3 N-terminal domain, but not the histone H4 N-terminal domain. Mutating lysine-4, lysine-9, lysine-14, lysine-18, lysine-23, and lysine-27 to glycine in histone H3 is also sufficient to significantly reduce subtelomeric gene repression. Individual histone H3 lysine mutations, however, have little effect on subtelomeric gene repression or genome-wide expression, indicating that these six lysine residues have redundant functions. We propose that acetylation and methylation of histone H3 N-terminal lysine residues act as redundant mechanisms to demarcate regions of euchromatin from heterochromatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.