The evaporation of water was monitored from 60, 64, and 68 wt % D(2)SO(4) at 213 K containing 0-0.18 M 1-butanol. Measurements were performed in vacuum using a mass spectrometer to record the velocities and relative fluxes of the desorbing D(2)O. In addition, the surface activity of butanol in the acid was characterized by hyperthermal argon atom scattering in conjunction with surface tension and butanol evaporation measurements. The segregated butyl species reach surface concentrations of approximately 4 x 10(14) cm(-2) (approximately 80% surface coverage) at 0.18 M bulk concentration. We find that the butyl films do not impede the evaporation of D(2)O from the acid to within the 5% uncertainty of the measurements. This result implies that small, soluble surfactants such as butanol form porous films that will not alter the growth or shrinkage of supercooled sulfuric acid droplets in the atmosphere.
The entry of HCl into 60-68 wt % D(2)SO(4) and HBr into 68 wt % acid containing 0-0.18 M 1-butanol was monitored by measuring the fractions of impinging HCl and HBr molecules that desorb as DCl and DBr after undergoing H --> D exchange within the deuterated acid. The addition of 0.18 M butanol to the acid creates butyl films that reach approximately 80% surface coverage at 213 K. Surprisingly, this butyl film does not impede exchange but instead enhances it: the HCl --> DCl exchange fractions increase from 0.52 to 0.74 for 60 wt % D(2)SO(4) and from 0.14 to 0.27 for 68 wt % D(2)SO(4). HBr --> DBr exchange increases even more sharply, rising from 0.22 to 0.65 for 68 wt % D(2)SO(4). We demonstrate that this enhanced exchange corresponds to enhanced uptake into the butyl-coated acid for HBr and infer this equivalence for HCl. In contrast, the entry probability of the basic molecule CF(3)CH(2)OH exceeds 0.85 at all acid concentrations and is only slightly diminished by the butyl film. The OD groups of surface butanol molecules may assist entry by providing extra interfacial protonation sites for HCl and HBr dissociation. The experiments suggest that short-chain surfactants in sulfuric acid aerosols do not hinder heterogeneous reactions of HCl or HBr with other solute species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.