SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions.
The cold-and menthol-sensitive receptor TRPM8 (transient receptor potential melastatin 8) has been suggested to play a role in cold allodynia, an intractable pain seen clinically. We studied how TRPM8 is involved in cold allodynia using rats with chronic constrictive nerve injury (CCI), a neuropathic pain model manifesting cold allodynia in hindlimbs. We found that cold allodynic response in the CCI animals was significantly attenuated by capsazepine, a blocker for both TRPM8 and TRPV1 (transient receptor potential vanilloid 1) receptors, but not by the selective TRPV1 antagonist I-RTX (5-iodoresiniferatoxin). In L5 dorsal root ganglion (DRG) sections of the CCI rats, immunostaining showed an increase in the percentage of TRPM8-immunoreactive neurons when compared with the sham group. Using the Ca 2ϩ -imaging technique and neurons acutely dissociated from the L5 DRGs, we found that CCI resulted in a significant increase in the percentage of menthol-and cold-sensitive neurons and also a substantial enhancement in the responsiveness of these neurons to both menthol and innocuous cold. These changes occurred in capsaicin-sensitive neurons, a subpopulation of nociceptive-like neurons. Using patch-clamp recordings, we found that membrane currents evoked by both menthol and innocuous cold were significantly enhanced in the CCI group compared with the sham group. By retrograde labeling afferent neurons that target hindlimb skin, we showed that the skin neurons expressed TRPM8 receptors, that the percentage of menthol-sensitive/cold-sensitive/capsaicin-sensitive neurons increased, and that the menthol-and cold-evoked responses were significantly enhanced in capsaicin-sensitive neurons after CCI. Together, the gain of TRPM8-mediated cold sensitivity on nociceptive afferent neurons provides a mechanism of cold allodynia.
The cold- and menthol-sensing TRPM8 receptor has been proposed to have both nonnociceptive and nociceptive functions. However, one puzzle is how this single type of receptor may be used by somatosensory neurons to code for two distinct sensory modalities. Using acutely dissociated rat dorsal root ganglion (DRG) neurons without culture, we show that TRPM8 receptors are expressed on two distinct classes of somatosensory neurons. One class is sensitive to menthol and features nonnociceptive neuron properties, including capsaicin-insensitive, ATP-insensitive, transient acid response, and expression of TTX-sensitive sodium channels only. This class is termed the menthol-sensitive/capsaicin-insensitive neuron class (MS/CIS). The other class is also sensitive to menthol but has characteristics of nociceptive neurons including capsaicin-sensitive, ATP-sensitive, prolonged acid response, and expression of both TTX-sensitive and TTX-resistant sodium channels. This class is termed the menthol-sensitive/capsaicin-sensitive neuron class (MS/CS). The presence of these two neuron classes in acutely dissociated DRG neurons support the idea that TRPM8 receptors can have both nonnociceptive and nociceptive functions. While both neuron classes respond to menthol and cold, the overall responses induced by menthol and cold are significantly larger in MS/CIS than in MS/CS neurons. Furthermore, low concentrations of menthol produce strong selection of the MS/CIS neuron population over the MS/CS neuron population. On the other hand, the population selection becomes weaker with higher concentrations of menthol. TRPM8 current density shows significant higher in MS/CIS neurons than in MS/CS neurons, suggesting different expression levels of TRPM8 receptors between the two neuron populations, and this difference may provide a mean of selective activation of MS/CIS neurons at low stimulation intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.