Rationale Diabetic cardiovascular complications are reaching epidemic proportions. Angiotensin-converting enzyme-2 (ACE2) is a negative regulator of the renin-angiotensin system. We hypothesize that loss of ACE2 exacerbates cardiovascular complications induced by diabetes. Objective To define the role of ACE2 in diabetic cardiovascular complications. Methods and Results We used the well-validated Akita mice, a model of human diabetes, and generated double-mutant mice using the ACE2 knockout (KO) mice (Akita/ACE2−/y). Diabetic state was associated with increased ACE2 in Akita mice, whereas additional loss of ACE2 in these mice leads to increased plasma and tissue angiotensin II levels, resulting in systolic dysfunction on a background of impaired diastolic function. Downregulation of SERCA2 and lipotoxicity were equivalent in Akita and Akita/ACE2KO hearts and are likely mediators of the diastolic dysfunction. However, greater activation of protein kinase C and loss of Akt and endothelial nitric oxide synthase phosphorylation occurred in the Akita/ACE2KO hearts. Systolic dysfunction in Akita/ACE2KO mice was linked to enhanced activation of NADPH oxidase and metalloproteinases, resulting in greater oxidative stress and degradation of the extracellular matrix. Impaired flow-mediated dilation in vivo correlated with increased vascular oxidative stress in Akita/ACE2KO mice. Treatment with the AT1 receptor blocker, irbesartan rescued the systolic dysfunction, normalized altered signaling pathways, flow-mediated dilation, and the increased oxidative stress in the cardiovascular system. Conclusions Loss of ACE2 disrupts the balance of the renin-angiotensin system in a diabetic state and leads to an angiotensin II/AT1 receptor-dependent systolic dysfunction and impaired vascular function. Our study demonstrates that ACE2 serves as a protective mechanism against diabetes-induced cardiovascular complications.
In the absence of ACE2, biomechanical stress triggers activation of the myocardial NAPDH oxidase system with a critical role of the p47(phox) subunit. Increased production of superoxide, activation of MMP, and pathological signalling leads to severe adverse myocardial remodelling and dysfunction in ACE2KO mice.
Compartment‐specific control of phosphoinositide lipids is essential for cell function. The Sac1 lipid phosphatase regulates endoplasmic reticulum (ER) and Golgi phosphatidylinositol‐4‐phosphate [PI(4)P] in response to nutrient levels and cell growth stages. During exponential growth, Sac1p interacts with Dpm1p at the ER but shuttles to the Golgi during starvation. Here, we report that a C‐terminal region in Sac1p is required for retention in the perinuclear ER, whereas the N‐terminal domain is responsible for Golgi localization. We also show that starvation‐induced shuttling of Sac1p to the Golgi depends on the coat protein complex II and the Rer1 adaptor protein. Starvation‐induced shuttling of Sac1p to the Golgi specifically eliminates a pool of PI(4)P generated by the lipid kinase Pik1p. In addition, absence of nutrients leads to a rapid dissociation of Pik1p, together with its non‐catalytical subunit Frq1p, from Golgi membranes. Reciprocal rounds of association/dissociation of the Sac1p lipid phosphatase and the Pik1p/Frq1p lipid kinase complex are responsible for growth‐dependent control of Golgi phosphoinositides. Sac1p and Pik1p/Frq1p are therefore elements of a unique machinery that synchronizes ER and Golgi function in response to different growth conditions.
BackgroundVarious pathways have been implicated in the pathogenesis of heart failure (HF) with preserved ejection fraction (HFPEF). Inflammation in response to comorbid conditions, such as hypertension and diabetes, may play a proportionally larger role in HFPEF as compared to HF with reduced ejection fraction (HFREF).Methods and ResultsThis study investigated inflammation mediated by the tumor necrosis factor-alpha (TNFα) axis in community-based cohorts of HFPEF patients (n = 100), HFREF patients (n = 100) and healthy controls (n = 50). Enzyme-linked immunosorbent assays were used to investigate levels of TNFα, its two receptors (TNFR1 and TNFR2), and a non-TNFα cytokine, interleukin-6 (IL-6), in plasma derived from peripheral blood samples. Plasma levels of TNFα and TNFR1 were significantly elevated in HFPEF relative to controls, while levels of TNFR2 were significantly higher in HFPEF than both controls and HFREF. TNFα, TNFR1 and TNFR2 were each significantly associated with at least two of the following: age, estimated glomerular filtration rate, hypertension, diabetes, smoking, peripheral vascular disease or history of atrial fibrillation. TNFR2 levels were also significantly associated with increasing grade of diastolic dysfunction and severity of symptoms in HFPEF.ConclusionsInflammation mediated through TNFα and its receptors, TNFR1 and TNFR2, may represent an important component of a comorbidity-induced inflammatory response that partially drives the pathophysiology of HFPEF.
A major limitation of cord blood (CB) hematopoietic stem/progenitor cell (HSPC) transplantation in adult patients is the low cell dose available, which is associated with delayed or failed engraftment. This has prompted intensive research to develop novel strategies to improve HSPC engraftment and reconstitution. The chemokine receptor CXCR4 and its ligand stromal cell-derived factor (SDF)-1alpha play a crucial role in the homing and repopulation capacity of HSPCs. We hypothesized that in HSPCs the CXCR4 receptor is regulated through chromatin remodeling by histone deacetylase inhibitors (HDIs) such as valproic acid (VPA). Using CB CD34(+) cells and the models of immature hematopoietic cells expressing CD34 antigen, namely the leukemic cell lines KG-1a and KG-1, we found that VPA increases surface and mRNA CXCR4 levels in these cells, thereby enhancing their migration toward an SDF-1alpha gradient. We also found that modulation of CXCR4 gene transcription by VPA correlates with the acetylation status of histone H4 in CB CD34(+) and KG-1 cells. Hence we suggest that in CB transplantation priming of HSPCs with VPA could improve homing and engraftment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.