BackgroundQuantifying the effects of climate change on the entomological and epidemiological components of vector-borne diseases is an essential part of climate change research, but evidence for such effects remains scant, and predictions rely largely on extrapolation of statistical correlations. We aimed to develop a mechanistic model to test whether recent increases in temperature in the Mana Pools National Park of the Zambezi Valley of Zimbabwe could account for the simultaneous decline of tsetse flies, the vectors of human and animal trypanosomiasis.Methods and findingsThe model we developed incorporates the effects of temperature on mortality, larviposition, and emergence rates and is fitted to a 27-year time series of tsetse caught from cattle. These catches declined from an average of c. 50 flies per animal per afternoon in 1990 to c. 0.1 in 2017. Since 1975, mean daily temperatures have risen by c. 0.9°C and temperatures in the hottest month of November by c. 2°C. Although our model provided a good fit to the data, it cannot predict whether or when extinction will occur.ConclusionsThe model suggests that the increase in temperature may explain the observed collapse in tsetse abundance and provides a first step in linking temperature to trypanosomiasis risk. If the effect at Mana Pools extends across the whole of the Zambezi Valley, then transmission of trypanosomes is likely to have been greatly reduced in this warm low-lying region. Conversely, rising temperatures may have made some higher, cooler, parts of Zimbabwe more suitable for tsetse and led to the emergence of new disease foci.
Monitoring abundance is essential for vector management, but it is often only possible in a fraction of managed areas. For vector control programmes, sampling to estimate abundance is usually carried out at a local‐scale (10s km2), while interventions often extend across 100s km2. Geostatistical models have been used to interpolate between points where data are available, but this still requires costly sampling across the entire area of interest. Instead, we used geostatistical models to predict local‐scale spatial variation in the abundance of tsetse—vectors of human and animal African trypanosomes—beyond the spatial extent of data to which models were fitted, in Serengeti, Tanzania.We sampled Glossina swynnertoni and Glossina pallidipes >10 km inside the Serengeti National Park (SNP) and along four transects extending into areas where humans and livestock live. We fitted geostatistical models to data >10 km inside the SNP to produce maps of abundance for the entire region, including unprotected areas.Inside the SNP, the mean number of G. pallidipes caught per trap per day in dense woodland was 166 (± 24 SE), compared to 3 (±1) in grassland. Glossina swynnertoni was more homogenous with respective means of 15 (±3) and 15 (±8). In general, models predicted a decline in abundance from protected to unprotected areas, related to anthropogenic changes to vegetation, which was confirmed during field survey.
Synthesis and applications. Our approach allows vector control managers to identify sites predicted to have relatively high tsetse abundance, and therefore to design and implement improved surveillance strategies. In East and Southern Africa, trypanosomiasis is associated with wilderness areas. Our study identified pockets of vegetation which could sustain tsetse populations in farming areas outside the Serengeti National Park. Our method will assist countries in identifying, monitoring and, if necessary, controlling tsetse in trypanosomiasis foci. This has specific application to tsetse, but the approach could also be developed for vectors of other pathogens.
In summary, because the number of these injuries is on the rise, it is important for the physician to be aware of the clinical manifestations of overuse injuries, to prescribe current recommended treatments, and to educate patients in proper athletic conditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.