The life history of Candida albicans presents an enigma: this species is thought to be exclusively asexual, yet strains show extensive phenotypic variation. To
The MADS-box gene AGAMOUS (AG) plays a key role in determining floral meristem and organ identities. We identified three AG homologs, EScaAG1, EScaAG2, and EScaAGL11 from the basal eudicot Eschscholzia californica (California poppy). Phylogenetic analyses indicate that EScaAG1 and EScaAG2 are recent paralogs within the AG clade, independent of the duplication in ancestral core eudicots that gave rise to the euAG and PLENA (PLE) orthologs. EScaAGL11 is basal to core eudicot AGL11 orthologs in a clade representing an older duplication event after the divergence of the angiosperm and gymnosperm lineages. Detailed in situ hybridization experiments show that expression of EScaAG1 and EScaAG2 is similar to AG; however, both genes appear to be expressed earlier in floral development than described in the core eudicots. A thorough examination of available expression and functional data in a phylogenetic context for members of the AG and AGL11 clades reveals that gene expression has been quite variable throughout the evolutionary history of the AG subfamily and that ovule-specific expression might have evolved more than twice. Although sub- and neofunctionalization are inferred to have occurred following gene duplication, functional divergence among orthologs is evident, as is convergence, among paralogs sampled from different species. We propose that retention of multiple AG homologs in several paralogous lineages can be explained by the conservation of ancestral protein activity combined with evolutionarily labile regulation of expression in the AG and AGL11 clades such that the collective functions of the AG subfamily in stamen and carpel development are maintained following gene duplication.
The Floral Genome Project (FGP) selected California poppy (Eschscholzia californica Cham. ssp. Californica) to help identify new florally-expressed genes related to floral diversity in basal eudicots. A large, non-normalized cDNA library was constructed from premeiotic and meiotic floral buds and sequenced to generate a database of 9,079 high quality Expressed Sequence Tags (ESTs). These sequences clustered into 5,713 unigenes, including 1,414 contigs and 4,299 singletons. Homologs of genes regulating many aspects of flower development were identified, including those for organ identity and development, cell and tissue differentiation, cell cycle control, and secondary metabolism. Over 5% of the transcriptome consisted of homologs to known floral gene families. Most are the first representatives of their respective gene families in basal eudicots and their conservation suggests they are important for floral development and/or function. App. 10% of the transcripts encoded transcription factors and other regulatory genes, including nine genes from the seven major lineages of the important MADS-box family of developmental regulators. Homologs of alkaloid pathway genes were also recovered, providing opportunities to explore adaptive evolution in secondary products. Furthermore, comparison of the poppy ESTs with the Arabidopsis genome provided support for putative Arabidopsis genes that previously lacked annotation. Finally, over 1,800 unique sequences had no observable homology in the public databases. The California poppy EST database and library will help bridge our understanding of flower initiation and development among higher eudicot and monocot model plants and provide new opportunities for comparative analysis of gene families across angiosperm species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.