Desiccation tolerant (DT) plants engage and disengage sustained forms of energy dissipation in response to desiccation and rehydration. This project sought to characterize the role of zeaxanthin and thylakoid protein phosphorylation status in sustained energy dissipation during desiccation in bryophytes with varying DT. Tolerant (Polytrichum piliferum, Dicranum species, Calliergon stramineum) and sensitive (Grimmia species, Schistidium rivulare, Sphagnum species) moss were desiccated in darkness or natural light conditions for up to three weeks. Desiccation caused pronounced reductions in Fv/Fm in all cases which was enhanced by light exposure during desiccation. Desiccation in darkness resulted in no accumulation of Z in any species, however, in natural light conditions there was significant accumulation of Z in tolerant but not sensitive species. Desiccation in natural light, relative to darkness, resulted in more pronounced reductions in Fo in tolerant but not sensitive species. Recovery of Fv/Fm upon rehydration occurred in two phases, a rapid phase (minutes) and a slower phase (hours). Increased time of desiccation, and light exposure, resulted in a reduction in the rapid phase. Desiccation in light conditions resulted in some accumulation of the phosphorylated form of the major light harvesting trimer (LHCII). Data are consistent with two mechanisms of sustained quenching, neither of which requires Z. However, when desiccation occurs in natural light conditions, accumulation of Z likely contributes to one or both of the sustained forms of dissipation. Increases in LHCII phosphorylation during desiccation are consistent with increased connectivity between the photosystems. The absence of Z formation in sensitive species may contribute to their lack of desiccation tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.