This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.
It has been recently demonstrated that molecular and molecular cluster guest species can intercalate within lamellar stacks of purple membrane (PM), and be subsequently dried to produce functional bioinorganic nanocomposite films. However, the mechanism for the intercalation process remains to be fully understood. Here we employ surface X-ray scattering to study the intercalation of aminopropyl silicic acid (APS) or aminopropyl-functionalised magnesium phyllosilicate (AMP) molecular clusters into PM films. The composite films are prepared under aqueous conditions by guest infiltration into preformed PM films, or by co-assembly from an aqueous dispersion of PM sheets and guest molecules/clusters.Our results show that addition of an aqueous solution of guest molecules to a dried preformed PM film results in loss of the lamellar phase, and that subsequent air-drying induces re-stacking of the lipid/ protein membrane sheets along with retention of a 2-3 nm hydration layer within the inter-lamellar spaces. We propose that this hydration layer is necessary for the intercalation of APS molecules or AMP oligomers into the PM film, and their subsequent condensation and retention as nano-thin inorganic lamellae within the composite mesostructure after drying. Our results indicate that the intercalated nanocomposites prepared from preformed PM films have a higher degree of ordering than those produced by co-assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.