Over the past decades, much research has focused on the mid-Cretaceous greenhouse climate, the formation of widespread organic-rich black shales, and cooling intervals from low-to mid-latitude sections. Data from the High Arctic, however, are limited. In this paper, we present high-resolution geochemical records for an ~1.8-km-thick sedimentary succession exposed on Axel Heiberg Island in the Canadian Arctic Archipelago at a paleolatitude of ~71°N. For the first time, we have data constraints for the timing and magnitude of most major Oceanic Anoxic Events (OAEs) in brackish-water (OAE1a) and shelf (OAE1b and OAE2) settings in the mid-Cretaceous High Arctic. These are consistent with carbon-climate perturbations reported from deep-water records of lower latitudes. Glendonite beds are observed in the upper Aptian to lower Albian, covering an interval of ~6 m.y. between 118 and 112 Ma. Although the formation of glendonites is still under discussion, these well-dated occurrences may support the existence of cool shelf waters in the High Arctic Sverdrup Basin at this time, coeval with recent geochemical data from the subtropical Atlantic indicating a drop in seasurface temperature of nearly 4 °C.
Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.