Knowing when the geodynamo started is important for understanding the evolution of the core, the atmosphere, and life on Earth. We report full-vector paleointensity measurements of Archean to Hadean zircons bearing magnetic inclusions from the Jack Hills conglomerate (Western Australia) to reconstruct the early geodynamo history. Data from zircons between 3.3 billion and 4.2 billion years old record magnetic fields varying between 1.0 and 0.12 times recent equatorial field strengths. A Hadean geomagnetic field requires a core-mantle heat flow exceeding the adiabatic value and is suggestive of plate tectonics and/or advective magmatic heat transport. The existence of a terrestrial magnetic field before the Late Heavy Bombardment is supported by terrestrial nitrogen isotopic evidence and implies that early atmospheric evolution on both Earth and Mars was regulated by dynamo behavior.
Over the past decades, much research has focused on the mid-Cretaceous greenhouse climate, the formation of widespread organic-rich black shales, and cooling intervals from low-to mid-latitude sections. Data from the High Arctic, however, are limited. In this paper, we present high-resolution geochemical records for an ~1.8-km-thick sedimentary succession exposed on Axel Heiberg Island in the Canadian Arctic Archipelago at a paleolatitude of ~71°N. For the first time, we have data constraints for the timing and magnitude of most major Oceanic Anoxic Events (OAEs) in brackish-water (OAE1a) and shelf (OAE1b and OAE2) settings in the mid-Cretaceous High Arctic. These are consistent with carbon-climate perturbations reported from deep-water records of lower latitudes. Glendonite beds are observed in the upper Aptian to lower Albian, covering an interval of ~6 m.y. between 118 and 112 Ma. Although the formation of glendonites is still under discussion, these well-dated occurrences may support the existence of cool shelf waters in the High Arctic Sverdrup Basin at this time, coeval with recent geochemical data from the subtropical Atlantic indicating a drop in seasurface temperature of nearly 4 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.