This systematic review examines the effectiveness of current exercise interventions for the management of frailty. Eight electronic databases were searched for randomized controlled trials that identified their participants as “frail” either in the title, abstract, and/or text and included exercise as an independent component of the intervention. Three of the 47 included studies utilized a validated definition of frailty to categorize participants. Emerging evidence suggests that exercise has a positive impact on some physical determinants and on all functional ability outcomes reported in this systematic review. Exercise programs that optimize the health of frail older adults seem to be different from those recommended for healthy older adults. There was a paucity of evidence to characterize the most beneficial exercise program for this population. However, multicomponent training interventions, of long duration (≥5 months), performed three times per week, for 30–45 minutes per session, generally had superior outcomes than other exercise programs. In conclusion, structured exercise training seems to have a positive impact on frail older adults and may be used for the management of frailty.
Mottram, Carol J., Jennifer M. Jakobi, John G. Semmler, and Roger M. Enoka. Motor-unit activity differs with load type during a fatiguing contraction. J Neurophysiol 93: [1381][1382][1383][1384][1385][1386][1387][1388][1389][1390][1391][1392] 2005. First published October 13, 2004; doi:10.1152/jn.00837.2004. Despite a similar rate of change in average electromyographic (EMG) activity, previous studies have observed different rates of change in mean arterial pressure, heart rate, perceived exertion, and fluctuations in motor output during the performance of fatiguing contractions that involved different types of loads. To obtain a more direct measure of the motor output from the spinal cord, the purpose of this study was to compare the discharge characteristics of the same motor unit in biceps brachii during the performance of two types of fatiguing contractions. In separate tests with the upper arm vertical and the elbow flexed to 1.57 rad, the seated subjects maintained either a constant upward force at the wrist (force task) or a constant elbow angle (position task) for a prescribed duration. The force and position tasks were performed in random order at a target force equal to 3.5 Ϯ 2.1% (mean Ϯ SD) of the maximal voluntary contraction (MVC) force above the recruitment threshold of the isolated motor unit. Each subject maintained the two tasks for an identical duration (161 Ϯ 96 s) at a mean target force of 22.2 Ϯ 13.4% MVC (range: 3-49% MVC). The dependent variables included the discharge characteristics of the same motor unit in biceps brachii, fluctuations in motor output (force or acceleration), mean arterial pressure, heart rate, and rating of perceived exertion. Despite similar increases in the amplitude of the averaged EMG (% MVC) for the elbow flexor muscles during both tasks (P ϭ 0.60), the rates of increase in mean arterial pressure (P Ͻ 0.001), rating of perceived exertion (P ϭ 0.023), and fluctuations in motor output (P ϭ 0.003) were greater during the position task compared with the force task. Consistent with these differences, mean discharge rate declined at a greater rate during the position task (P ϭ 0.03), and the coefficient of variation for discharge rate increased only during the position task (P ϭ 0.02). Furthermore, more motor units were recruited during the position task compared with the force task (P ϭ 0.01). These findings indicate that despite a comparable net muscle torque, the rate of increase in the motor output from the spinal cord was greater during the position task.
Whole-body vibration (WBV) training uses a vertically oscillating platform and reports suggest that this perturbation elicits reflexive muscle contractions that augment muscle activity and contribute to increased strength. No WBV study has measured both upper- and lower-body muscle activation. The purpose of this study was to determine the optimal WBV stimulus (frequency x amplitude) to increase electromyography (EMG) in upper- and lower-body muscles for three distinctive unloaded actions: isometric semi-squat, dynamic leg squats, and static and dynamic bilateral bicep curls. Surface EMG was measured for the vastus lateralis (VL), biceps femoris (BF), biceps brachii (BB), and triceps brachii (TB) in 10 recreationally active male university students (24.4+/-2.0 years; mean+/-SD) when WBV was administered at 2 and 4 mm and at 25, 30, 35, 40, and 45 Hz. EMG changes are reported as the difference between WBV and no WBV EMG root mean square expressed as a percentage of maximum voluntary exertion (%MVE). In static semi-squat, WBV increased muscle activity 2.9%-6.7% in the VL and 0.8%-1.2% in the BF. During dynamic squatting, WBV increased muscle activity in the VL by 3.7%-8.7% and in the BF by 0.4%-2.0%. In a static biceps curl, WBV had no effect on BB EMG, but did increase TB activity 0.3%-0.7%. During dynamic biceps curls, WBV increased BB EMG activity by 0.6%-0.8% and TB activity by 0.2%-1.0%. The higher WBV amplitude (4 mm) and frequencies (35, 40, 45 Hz) resulted in the greatest increases in EMG activity.
This study compared adaptations in fascicle lengths, pennation angles, and muscle thickness of the lateral and medial gastrocnemii in response to 6 weeks of stretch training. The nondominant plantar flexors of 11 males were stretched five times per week for 6 weeks and compared with the contralateral leg and a nonstretched control group of 10 males. During stretch training, instantaneous electromyography was utilized to ensure passive muscle stretch. At baseline, week three, week six and 1 week after the conclusion of stretch training, ultrasound was used to measure fascicle lengths, pennation angles, muscle thickness of the lateral gastrocnemius and medial gastrocnemius, and Achilles tendon thickness and length. Plantar flexion torque was measured, and voluntary activation was assessed. Muscle thickness increased 5.6% after 6 weeks of stretch training (P=.009). The fascicles in the lateral gastrocnemius lengthened to a greater extent than the medial. Overall, fascicles lengthened 25% (P<.001) in the muscle tendon junction and 5.1% (P<.001) in the muscle belly. Pennation angles were unchanged in the medial gastrocnemius but decreased in the lateral gastrocnemius 7.1% (P=.02). There was no change in maximal voluntary contraction, voluntary activation, tendon length, or thickness. This study demonstrates that stretch training is a viable modality to alter muscle architecture of the human gastrocnemius through lengthening of muscle fascicles, decreasing pennation angles, and increasing muscle thickness, albeit adaptations are unequal between the lateral and medial heads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.