Plasmacytoid dendritic cells (pDCs) have been identified as a potent secretor of the type I interferons (IFNs) in response to CpG as well as several viruses. In this study, we examined the molecular mechanism of virus recognition by pDCs. First, we demonstrated that the CD11c+Gr-1intB220+ pDCs from mouse bone marrow secreted high levels of IFN-α in response to either live or UV-inactivated Herpes simplex virus-2 (HSV-2). Next, we identified that IFN-α secretion by pDCs required the expression of the adaptor molecule MyD88, suggesting the involvement of a Toll-like receptor (TLR) in HSV-2 recognition. To test whether a TLR mediates HSV-2–induced IFN-α secretion from pDCs, various knockout mice were examined. These experiments revealed a clear requirement for TLR9 in this process. Further, we demonstrated that purified HSV-2 DNA can trigger IFN-α secretion from pDCs and that inhibitory CpG oligonucleotide treatment diminished HSV-induced IFN-α secretion by pDCs in a dose-dependent manner. The recognition of HSV-2 by TLR9 was mediated through an endocytic pathway that was inhibited by chloroquine or bafilomycin A1. The strict requirement for TLR9 in IFN-α secretion was further confirmed by the inoculation of HSV-2 in vivo. Therefore, these results demonstrate a novel mechanism whereby the genomic DNA of a virus can engage TLR9 and result in the secretion of IFN-α by pDCs.
Plasmacytoid dendritic cells (pDCs) detect viruses in the acidified endosomes via Toll-like receptors (TLRs). Yet, pDC responses to certain single-stranded RNA (ssRNA) viruses occur only following live viral infection. We present evidence here that the recognition of such viruses by TLR7 requires transport of cytosolic viral replication intermediates into the lysosome by the process of autophagy. In addition, autophagy was found to be required for the production of interferon-α (IFN-α) by pDCs. These results support a key role for autophagy in mediating ssRNA virus detection and IFN-α secretion by pDCs and suggest that cytosolic replication intermediates of viruses serve as pathogen signatures recognized by TLR7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.