Synaptotagmin is a synaptic vesicle protein that is postulated to be the Ca(2+) sensor for fast, evoked neurotransmitter release. Deleting the gene for synaptotagmin (syt(null)) strongly suppresses synaptic transmission in every species examined, showing that synaptotagmin is central in the synaptic vesicle cycle. The cytoplasmic region of synaptotagmin contains two C(2) domains, C(2)A and C(2)B. Five, highly conserved, acidic residues in both the C(2)A and C(2)B domains of synaptotagmin coordinate the binding of Ca(2+) ions, and biochemical studies have characterized several in vitro Ca(2+)-dependent interactions between synaptotagmin and other nerve terminal molecules. But there has been no direct evidence that any of the Ca(2+)-binding sites within synaptotagmin are required in vivo. Here we show that mutating two of the Ca(2+)-binding aspartate residues in the C(2)B domain (D(416,418)N in Drosophila) decreased evoked transmitter release by >95%, and decreased the apparent Ca(2+) affinity of evoked transmitter release. These studies show that the Ca(2+)-binding motif of the C(2)B domain of synaptotagmin is essential for synaptic transmission.
The synaptic vesicle protein, synaptotagmin, has been hypothesized to mediate several functions in neurotransmitter release including calcium sensing, vesicle recycling, and synaptic vesicle docking. These hypotheses are based on evidence from in vitro binding assays, peptide and antibody injection experiments, and genetic knockout studies. Synaptotagmin contains two domains that are homologous to the calcium ion (Ca(2+))-binding C2 domain of protein kinase C. The two C2 domains of synaptotagmin have broadly differing ligand-binding properties. We have focused on the second C2 domain (C2B) of synaptotagmin I, in particular, on a series of conserved lysine residues on beta-strand 4 of C2B. This polylysine motif binds clathrin-adapter protein AP-2, neuronal calcium channels, and inositol high polyphosphates. It also mediates Ca(2+)-dependent oligomerization. To investigate the importance of these lysine residues in synaptic transmission, we have introduced synaptotagmin I (syt) transgenes harboring specific polylysine motif mutations into flies otherwise lacking the synaptotagmin I protein (syt(null)). Electrophysiological analyses of these mutants revealed that evoked transmitter release is decreased by approximately 36% and that spontaneous release is increased approximately twofold relative to syt(null) flies that express a wild type syt transgene. Synaptotagmin expression in both the mutant and the wild type transgenic lines was equivalent, as measured by semiquantitative Western blot analysis. Thus, the alteration in synaptic transmission was due to the mutation and not to the level of synaptotagmin expression. We conclude that synaptotagmin interactions mediated by the C2 B polylysine motif are required to attain full synaptotagmin function in vivo.
Synaptotagmin is a synaptic vesicle protein required for efficient neurotransmitter release, yet its exact role in the synaptic vesicle cycle is unclear. Drosophila presents an ideal organism for studies aimed at determining the in vivo functions of proteins. However, synaptotagmin studies have been limited by the early (embryonic or first instar) lethality previously reported for Drosophila synaptotagmin I null (syt(null)) mutants. Here we report a new culturing technique that enhances survival of severely uncoordinated mutants thereby permitting Drosophila syt(null) mutants to survive through early adulthood. We examined synapses in syt(null) third instar larvae by electrophysiology and found that they exhibit severely decreased and asynchronous evoked neurotransmitter release, as well as an increased rate of spontaneous neurotransmitter release, as previously seen in first instar syt(null) larvae. The ability to examine severe synaptotagmin mutants as third instar larvae, a stage where electrophysiological and morphological analyses are more easily accomplished, will facilitate structure/function studies.
The synaptic vesicle protein, synaptotagmin, has been hypothesized to mediate several functions in neurotransmitter release including calcium sensing, vesicle recycling, and synaptic vesicle docking. These hypotheses are based on evidence from in vitro binding assays, peptide and antibody injection experiments, and genetic knockout studies. Synaptotagmin contains two domains that are homologous to the calcium ion (Ca(2+))-binding C2 domain of protein kinase C. The two C2 domains of synaptotagmin have broadly differing ligand-binding properties. We have focused on the second C2 domain (C2B) of synaptotagmin I, in particular, on a series of conserved lysine residues on beta-strand 4 of C2B. This polylysine motif binds clathrin-adapter protein AP-2, neuronal calcium channels, and inositol high polyphosphates. It also mediates Ca(2+)-dependent oligomerization. To investigate the importance of these lysine residues in synaptic transmission, we have introduced synaptotagmin I (syt) transgenes harboring specific polylysine motif mutations into flies otherwise lacking the synaptotagmin I protein (syt(null)). Electrophysiological analyses of these mutants revealed that evoked transmitter release is decreased by approximately 36% and that spontaneous release is increased approximately twofold relative to syt(null) flies that express a wild type syt transgene. Synaptotagmin expression in both the mutant and the wild type transgenic lines was equivalent, as measured by semiquantitative Western blot analysis. Thus, the alteration in synaptic transmission was due to the mutation and not to the level of synaptotagmin expression. We conclude that synaptotagmin interactions mediated by the C2 B polylysine motif are required to attain full synaptotagmin function in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.