The gastrointestinal (GI) microbiome of cats and dogs is increasingly recognized as a metabolically active organ inextricably linked to pet health. Food serves as a substrate for the GI microbiome of cats and dogs and plays a significant role in defining the composition and metabolism of the GI microbiome. The microbiome, in turn, facilitates the host's nutrient digestion and the production of postbiotics, which are bacterially derived compounds that can influence pet health. Consequently, pet owners have a role in shaping the microbiome of cats and dogs through the food they choose to provide. Yet, a clear understanding of the impact these food choices have on the microbiome, and thus on the overall health of the pet, is lacking. Pet foods are formulated to contain the typical nutritional building blocks of carbohydrates, proteins, and fats, but increasingly include microbiome-targeted ingredients, such as prebiotics and probiotics. Each of these categories, as well as their relative proportions in food, can affect the composition and/or function of the microbiome. Accumulating evidence suggests that dietary components may impact not only GI disease, but also allergies, oral health, weight management, diabetes, and kidney disease through changes in the GI microbiome. Until recently, the focus of microbiome research was to characterize alterations in microbiome composition in disease states, while less research effort has been devoted to understanding how changes in nutrition can influence pet health by modifying the microbiome function. This review summarizes the impact of pet food nutritional components on the composition and function of the microbiome and examines evidence for the role of nutrition in impacting host health through the microbiome in a variety of disease states. Understanding how nutrition can modulate GI microbiome composition and function may reveal new avenues for enhancing the health and resilience of cats and dogs.
Summary
Polysaccharide storage myopathy (PSSM) is a distinct cause of exertional rhabdomyolysis in Quarter Horses that results in glycogen and abnormal polysaccharide accumulation. The purpose of this study was to determine if excessive glycogen storage in PSSM is due to a glycolytic defect that impairs utilisation of this substrate during exercise. Muscle biopsies, blood lactates and serum CK were obtained 1) at rest from 5 PSSM Quarter Horses, 4 normal Quarter Horses (QH controls) and 6 Thoroughbreds with recurrent exertional rhabdomyolysis (TB RER) and 2) after a maximal treadmill exercise test in PSSM and QH controls. In addition, 3 PSSM horses performed a submaximal exercise test. At rest, muscle glycogen concentrations were 2.4x and 1.9x higher in PSSM vs. QH controls or TB RER, respectively. Muscle lactates at rest were similar between PSSM and QH controls but significantly higher in PSSM vs. TB RER. Muscle glucose‐6‐phosphate concentrations were also higher in PSSM horses than controls combined. During maximal exercise, mean muscle glycogen concentrations declined 2.7x more and mean lactate increased 2x more in PSSM vs. QH controls; however, differences were not statistically significant. Blood lactate concentrations after maximal exercise did not reflect generally higher muscle lactate in PSSM vs. QH controls. No change in blood lactate concentrations occurred in PSSM horses with submaximal exercise. Serum CK activity increased significantly 4 h after maximal and submaximal exercise and was significantly higher in PSSM vs. QH controls. These results show that during maximal exercise, PSSM horses utilised muscle glycogen and produce lactic acid via a functional glycolytic pathway and that during submaximal exercise oxidative metabolism was unimpaired. The excessive glycogen storage and formation of abnormal polysaccharide in PSSM horses therefore appear to reflect increased glycogen synthesis rather than decreased utilisation. The specific subset of horses with exertional rhabdomyolysis due to PSSM would likely benefit clinically from a diet low in soluble carbohydrates like grain with fat added as well as gradually increasing daily exercise to reduce excessive glycogen accumulation and enhance utilisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.