Chalcone synthase (CHS), a key enzyme in flavonoid biosynthesis, catalyses sequential decarboxylative condensations of p-coumaroyl-CoA with three malonyl-CoA molecules and cyclizes the resulting tetraketide intermediate to produce chalcone. Phenylglyoxal, an Arg selective reagent, was found to inactivate the enzyme, although no Arg is found at the active site. Conserved, non-active site Arg residues of CHS were individually mutated and the results were discussed in the context of the 3D structure of CHS. Arg199 and Arg350 were shown to provide important interactions to maintain the structural integrity and foldability of the enzyme. Arg68, Arg172 and Arg328 interact with highly conserved Gln33/Phe215, Glu380 and Asp311/Glu314, respectively, thus helping position the catalytic Cys-His-Asn triad and the (372)GFGPG loop in correct topology at the active site. In particular, a mutation of Arg172 resulted in selective impairment in the cyclization activities of CHS and stilbene synthase, a related enzyme that catalyses a different cyclization of the same tetraketide intermediate. These Arg residues and their interactions are well conserved in other enzymes of the CHS superfamily, suggesting that they may serve similar functions in other enzymes. Mutations of Arg68 and Arg328 had been found in mutant plants that showed impaired CHS activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.