Background Rheumatoid arthritis (RA)-associated lung disease (LD) associates with significantly increased morbidity and mortality. Although oxidative stress plays an important role in the inflammatory responses in other forms of lung disease, minimal work has evaluated its role in RA-LD. The current work examines the relationship between the anti-oxidant HDL-associated enzyme paraoxonase-1 (PON1), the PON1 Q192R polymorphism, and a targeted oxylipin panel with RA-LD. Methods This study was conducted as a retrospective chart review of a longitudinal single-center cohort of 250 RA patients. CT scans of the chest were reviewed by the interpreting radiologist and classified as small airways disease (SAD), interstitial lung disease (ILD), and bronchiectasis. PON1 activity was measured by its lactonase, arylesterase, and paraoxonase functions. The PON1 Q192R polymorphism and a targeted lipidomics panel were performed as previously reported. Results 43.2% of the 250 RA patient cohort (n = 108) had available CT scans, including 48 patients (44.4%) with SAD, 27 patients (25.0%) with bronchiectasis, and 16 patients (14.8%) with ILD. Patients with SAD had significantly lower baseline PON1 activity by its arylesterase, and lactonase functions, as well as higher 15-HETE, LTB4, and PGE2 levels compared to those without SAD. These predictors of SAD remained significant after multivariate analysis including known risk factors for RA-LD. Suppressed PON1 activity also correlated with higher levels of 15-HETE and 12-HETE. Conclusion In a single-center RA cohort, suppressed baseline PON1 activity and elevation in the oxylipins 15-HETE, LTB4, and PGE2 predicted the presence of RA-SAD in longitudinal follow-up. Key Points• Small airways disease (SAD) was present in 44.4% of this rheumatoid arthritis (RA) cohort.• Patients with SAD had significantly lower baseline PON1 activity, as well as higher levels of the oxylipins 15-HETE, LTB4, and PGE2 levels compared to those without SAD.• Further work is warranted to confirm these findings and further define the role of PON1 and lipid oxidation in RA lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.