In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.
Brisbane, the capital of Queensland, Australia, has flooded periodically and catastrophically, most recently in January 2011. Official seasonal rainfall forecasts failed to predict the floods. Since winter 2013, the Australian Bureau of Meteorology uses a general circulation model, the Predictive Ocean Atmosphere Model for Australia (POAMA), to make official seasonal rainfall forecasts presented as the conditional probability of rainfall being greater or less than the long-term median rainfall. We show that a more skilful forecast can be made using an artificial neural network (ANN), a form of statistical modelling based on artificial intelligence. A Jordan recurrent neural network with one hidden layer was implemented, using genetic optimization of inputs. For the sites of Gatton and Harrisville, in the Brisbane catchment, monthly rainfall forecasts from the ANN show lower root mean square errors than forecasts from POAMA. These rainfall forecasts from the ANN model were further improved by using inputs of independently forecast values for climate indices including the Southern Oscillation Index, the Interdecadal Pacific Oscillation, Pacific sea surface temperature anomalies (Niño 3.4) and also atmospheric temperature. The results presented here represent a first attempt at independently forecasting climate indices using an ANN model for the Australian east coast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.