The calcium sensing receptor (CaSR) is a Family C/3 G protein-coupled receptor that translates changes in extracellular Ca(2+) into diverse intracellular signals. Loss-of-function mutations in human CaSR cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. CaSR must navigate a number of endoplasmic reticulum quality control checkpoints during biosynthesis, including a conformational/functional checkpoint. Here we examine the biosynthesis of 25 CaSR mutations causing familial hypocalciuric hypercalcemia /neonatal severe hyperparathyroidism using immunoprecipitation, biotinylation, and functional assays. We define classes of CaSR mutants based on their biosynthetic profile. Class I CaSR mutants are not rescued to the plasma membrane. To dissect the organellar compartments that class I mutants can access, we engineered a cleavage site for the proprotein convertase furin into the extracellular domain of wild-type CaSR and class I mutants. Based on absence or presence of cleavage fragments, we find most mutants are degraded from the endoplasmic reticulum (no furin-mediated cleavage), whereas others access the Golgi (furin-mediated cleavage) before degradation. Class II CaSR mutants show increased expression and/or enhanced plasma membrane localization upon treatment with MG132 or the pharmacochaperone NPS R-568, permitting assay of functional activity. Of the 10 CaSR mutants that exhibit plasma membrane localization, only two did not show enhanced functional activity after rescue with NPS R-568. The established approaches can be used with current and newly identified CaSR mutations to identify the location of biosynthetic block and to determine the likelihood of rescue by allosteric agonists.
Calcium sensing receptor (CaSR) mutations implicated in familial hypocalciuric hypercalcemia, pancreatitis and idiopathic epilepsy syndrome map to an extended arginine-rich region in the proximal carboxyl terminus. Arginine-rich motifs mediate endoplasmic reticulum retention and/or retrieval of multisubunit proteins so we asked whether these mutations, R886P, R896H or R898Q, altered CaSR targeting to the plasma membrane. Targeting was enhanced by all three mutations, and Ca2+-stimulated ERK1/2 phosphorylation was increased for R896H and R898Q. To define the role of the extended arginine-rich region in CaSR trafficking, we independently determined the contributions of R890/R891 and/or R896/K897/R898 motifs by mutation to alanine. Disruption of the motif(s) significantly increased surface expression and function relative to wt CaSR. The arginine-rich region is flanked by phosphorylation sites at S892 (protein kinase C) and S899 (protein kinase A). The phosphorylation state of S899 regulated recognition of the arginine-rich region; S899D showed increased surface localization. CaSR assembles in the endoplasmic reticulum as a covalent disulfide-linked dimer and we determined whether retention requires the presence of arginine-rich regions in both subunits. A single arginine-rich region within the dimer was sufficient to confer intracellular retention comparable to wt CaSR. We have identified an extended arginine-rich region in the proximal carboxyl terminus of CaSR (residues R890 - R898) which fosters intracellular retention of CaSR and is regulated by phosphorylation. Mutation(s) identified in chronic pancreatitis and idiopathic epilepsy syndrome therefore increase plasma membrane targeting of CaSR, likely contributing to the altered Ca2+ signaling characteristic of these diseases.
The isoform of protein kinase C responsible for the inhibition of histamine-stimulated adenylate cyclase by the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), has been investigated in a particulate fraction prepared from the human gastric cancer cell line HGT-1. The alpha and epsilon isoforms of protein kinase C were detected in HGT-1 cells and in a 40,000 x g particulate fraction by immunoblotting procedures. The inhibitory effect of TPA on histamine-stimulated adenylate cyclase was enhanced by the presence of Ca2+, but decreased in a concentration-dependent manner by anti-peptide antibody to protein kinase C alpha, but not to protein kinase C epsilon. Addition of Ca2+ and TPA to the 40,000 x g particulate fraction stimulated the phosphorylation of the protein kinase C substrate myelin basic peptide 4-14. Protein kinase C alpha is probably the isoform responsible for inhibition of histamine-stimulated adenylate cyclase in HGT-1 cells.
Ovarian cancer is one of the most common gynaecological cancers today. This study therefore investigates the anticancer effects of Ficus exasperata extracts and fractions on ovarian cancer cells. The antiproliferative activity of the crude extracts (1 mg/mL) was assessed using the MTT assay on A2780 (ovarian cancer) cell line. Bio-activity guided fractionation was performed and preliminary identification was further achieved using high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. All crude extracts tested exhibited antiproliferative activity except for the methanol extract which interestingly showed proliferative effects. Five fatty acids were identified from the active fractions (FB1-10 and FB1-12). FB1-12 exhibited an IC value of 15.20 μg/mL. The least potent fraction (FB1-4 + 5) had an IC value of 34.51 μg/mL. H1-HEX and H1-MET exhibited 97.2 and 97.9%, respectively, compared to control. This study therefore provides proof-of-principle that fatty acids of Ficus exasperata exhibit significant antiproliferative effects on ovarian cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.