SummaryBackgroundThe WHO declared the 2014 west African Ebola epidemic a public health emergency of international concern in view of its potential for further international spread. Decision makers worldwide are in need of empirical data to inform and implement emergency response measures. Our aim was to assess the potential for Ebola virus to spread across international borders via commercial air travel and assess the relative efficiency of exit versus entry screening of travellers at commercial airports.MethodsWe analysed International Air Transport Association data for worldwide flight schedules between Sept 1, 2014, and Dec 31, 2014, and historic traveller flight itinerary data from 2013 to describe expected global population movements via commercial air travel out of Guinea, Liberia, and Sierra Leone. Coupled with Ebola virus surveillance data, we modelled the expected number of internationally exported Ebola virus infections, the potential effect of air travel restrictions, and the efficiency of airport-based traveller screening at international ports of entry and exit. We deemed individuals initiating travel from any domestic or international airport within these three countries to have possible exposure to Ebola virus. We deemed all other travellers to have no significant risk of exposure to Ebola virus.FindingsBased on epidemic conditions and international flight restrictions to and from Guinea, Liberia, and Sierra Leone as of Sept 1, 2014 (reductions in passenger seats by 51% for Liberia, 66% for Guinea, and 85% for Sierra Leone), our model projects 2·8 travellers infected with Ebola virus departing the above three countries via commercial flights, on average, every month. 91 547 (64%) of all air travellers departing Guinea, Liberia, and Sierra Leone had expected destinations in low-income and lower-middle-income countries. Screening international travellers departing three airports would enable health assessments of all travellers at highest risk of exposure to Ebola virus infection.InterpretationDecision makers must carefully balance the potential harms from travel restrictions imposed on countries that have Ebola virus activity against any potential reductions in risk from Ebola virus importations. Exit screening of travellers at airports in Guinea, Liberia, and Sierra Leone would be the most efficient frontier at which to assess the health status of travellers at risk of Ebola virus exposure, however, this intervention might require international support to implement effectively.FundingCanadian Institutes of Health Research.
BackgroundThe worldwide distribution of dengue is expanding, in part due to globalized traffic and trade. Aedes albopictus is a competent vector for dengue viruses (DENV) and is now established in numerous regions of Europe. Viremic travellers arriving in Europe from dengue-affected areas of the world can become catalysts of local outbreaks in Europe. Local dengue transmission in Europe is extremely rare, and the last outbreak occurred in 1927–28 in Greece. However, autochthonous transmission was reported from France in September 2010, and from Croatia between August and October 2010.MethodologyWe compiled data on areas affected by dengue in 2010 from web resources and surveillance reports, and collected national dengue importation data. We developed a hierarchical regression model to quantify the relationship between the number of reported dengue cases imported into Europe and the volume of airline travellers arriving from dengue-affected areas internationally.Principal FindingsIn 2010, over 5.8 million airline travellers entered Europe from dengue-affected areas worldwide, of which 703,396 arrived at 36 airports situated in areas where Ae. albopictus has been recorded. The adjusted incidence rate ratio for imported dengue into European countries was 1.09 (95% CI: 1.01–1.17) for every increase of 10,000 travellers; in August, September, and October the rate ratios were 1.70 (95%CI: 1.23–2.35), 1.46 (95%CI: 1.02–2.10), and 1.35 (95%CI: 1.01–1.81), respectively. Two Italian cities where the vector is present received over 50% of all travellers from dengue-affected areas, yet with the continuing vector expansion more cities will be implicated in the future. In fact, 38% more travellers arrived in 2013 into those parts of Europe where Ae. albopictus has recently been introduced, compared to 2010.ConclusionsThe highest risk of dengue importation in 2010 was restricted to three months and can be ranked according to arriving traveller volume from dengue-affected areas into cities where the vector is present. The presence of the vector is a necessary, but not sufficient, prerequisite for DENV onward transmission, which depends on a number of additional factors. However, our empirical model can provide spatio-temporal elements to public health interventions.
Background: For the first time, an outbreak of chikungunya has been reported in the Americas. Locally acquired infections have been confirmed in fourteen Caribbean countries and dependent territories, Guyana and French Guiana, in which a large number of North American travelers vacation. Should some travelers become infected with chikungunya virus, they could potentially introduce it into the United States, where there are competent Aedes mosquito vectors, with the possibility of local transmission. Methods: We analyzed historical data on airline travelers departing areas of the Caribbean and South America, where locally acquired cases of chikungunya have been confirmed as of May 12th, 2014. The final destinations of travelers departing these areas between May and July 2012 were determined and overlaid on maps of the reported distribution of Aedes aeygpti and albopictus mosquitoes in the United States, to identify potential areas at risk of autochthonous transmission. Results: The United States alone accounted for 52.1% of the final destinations of all international travelers departing chikungunya indigenous areas of the Caribbean between May and July 2012. Cities in the United States with the highest volume of air travelers were New York City, Miami and San Juan (Puerto Rico). Miami and San Juan were high travel-volume cities where Aedes aeygpti or albopictus are reported and where climatic conditions could be suitable for autochthonous transmission. Conclusion: The rapidly evolving outbreak of chikungunya in the Caribbean poses a growing risk to countries and areas linked by air travel, including the United States where competent Aedes mosquitoes exist. The risk of chikungunya importation into the United States may be elevated following key travel periods in the spring, when large numbers of North American travelers typically vacation in the Caribbean.
See also www.cmaj.ca/lookup
IntroductionWhen Zika virus (ZIKV) first began its spread from Brazil to other parts of the Americas, national-level travel notices were issued, carrying with them significant economic consequences to affected countries. Although regions of some affected countries were likely unsuitable for mosquito-borne transmission of ZIKV, the absence of high quality, timely surveillance data made it difficult to confidently demarcate infection risk at a sub-national level. In the absence of reliable data on ZIKV activity, a pragmatic approach was needed to identify subnational geographic areas where the risk of ZIKV infection via mosquitoes was expected to be negligible. To address this urgent need, we evaluated elevation as a proxy for mosquito-borne ZIKV transmission.MethodsFor sixteen countries with local ZIKV transmission in the Americas, we analyzed (i) modelled occurrence of the primary vector for ZIKV, Aedes aegypti, (ii) human population counts, and (iii) reported historical dengue cases, specifically across 100-meter elevation levels between 1,500m and 2,500m. Specifically, we quantified land area, population size, and the number of observed dengue cases above each elevation level to identify a threshold where the predicted risks of encountering Ae. aegypti become negligible.ResultsAbove 1,600m, less than 1% of each country’s total land area was predicted to have Ae. aegypti occurrence. Above 1,900m, less than 1% of each country’s resident population lived in areas where Ae. aegypti was predicted to occur. Across all 16 countries, 1.1% of historical dengue cases were reported above 2,000m.DiscussionThese results suggest low potential for mosquito-borne ZIKV transmission above 2,000m in the Americas. Although elevation is a crude predictor of environmental suitability for ZIKV transmission, its constancy made it a pragmatic input for policy decision-making during this public health emergency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.