Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, which play a central role in the host-parasite interaction by binding to various host molecules. They are encoded by a diverse family of genes called var, of which there are Ϸ60 copies in each parasite genome. In subSaharan Africa, although P. falciparum infection occurs throughout life, severe malarial disease tends to occur only in childhood. This could potentially be explained if (i) PfEMP1 variants differ in their capacity to support pathogenesis of severe malaria and (ii) this capacity is linked to the likelihood of each molecule being recognized and cleared by naturally acquired antibodies. Here, in a study of 217 Kenyan children with malaria, we show that expression of a group of var genes ''cys2,'' containing a distinct pattern of cysteine residues, is associated with low host immunity. Expression of cys2 genes was associated with parasites from young children, those with severe malaria, and those with a poorly developed antibody response to parasite-infected erythrocyte surface antigens. Cys-2 var genes form a minor component of all genomic var repertoires analyzed to date. Therefore, the results are compatible with the hypothesis that the genomic var gene repertoire is organized such that PfEMP1 molecules that confer the most virulence to the parasite tend also to be those that are most susceptible to the development of host immunity. This may help the parasite to adapt effectively to the development of host antibodies through modification of the host-parasite relationship.antigenic variation ͉ escape ͉ malaria ͉ PfEMP1 ͉ virulence
PfEMP1 is a family of cytoadhesive surface antigens expressed on erythrocytes infected with Plasmodium falciparum, the parasite that causes the most severe form of malaria. These surface antigens play a role in immune evasion and are thought to contribute to the pathogenesis of the malaria parasite. Previous studies have suggested a role for a specific subset of PfEMP1 called “group A” in severe malaria. To explore the role of group A PfEMP1 in disease, we measured the expression of the “var” genes that encode them in parasites from clinical isolates collected from children suffering from malaria. We also looked at the ability of these clinical isolates to induce rosetting of erythrocytes, which indicates a cytoadhesion phenotype that is thought to be important in pathogenesis. These two sets of data were correlated with the presence of two life-threatening manifestations of severe malaria in the children: impaired consciousness and respiratory distress. Using regression analysis, we show that marked rosetting was associated with respiratory distress, whereas elevated expression of group A-like var genes without elevated rosetting was associated with impaired consciousness. The results suggest that manifestations of malarial disease may reflect the distribution of cytoadhesion phenotypes expressed by the infecting parasite population.
In studies of immunity to malaria, the absence of febrile malaria is commonly considered evidence of "protection." However, apparent "protection" may be due to a lack of exposure to infective mosquito bites or due to immunity. We studied a cohort that was given curative antimalarials before monitoring began and documented newly acquired asymptomatic parasitemia and febrile malaria episodes during 3 months of surveillance. With increasing age, there was a shift away from febrile malaria to acquiring asymptomatic parasitemia, with no change in the overall incidence of infection. Antibodies to the infected red cell surface were associated with acquiring asymptomatic infection rather than febrile malaria or remaining uninfected. Bed net use was associated with remaining uninfected rather than acquiring asymptomatic infection or febrile malaria. These observations suggest that most uninfected children were unexposed rather than "immune." Had they been immune, we would have expected the proportion of uninfected children to rise with age and that the uninfected children would have been distinguished from children with febrile malaria by the protective antibody response. We show that removing the less exposed children from conventional analyses clarifies the effects of immunity, transmission intensity, bed nets, and age. Observational studies and vaccine trials will have increased power if they differentiate between unexposed and immune children.
IntroductionThe ARTIC Network's primer set and amplicon-based protocol is one of the most widely used SARS-CoV-2 sequencing protocol. An update to the V3 primer set was released on 18th June 2021 to address amplicon drop-off observed among the Delta variant of concern. Here, we report on an in-house optimization of a modified version of the ARTIC Network V4 protocol that improves SARS-CoV-2 genome recovery in instances where the original V4 pooling strategy was characterized by amplicon drop-offs.MethodsWe utilized a matched set of 43 clinical samples and serially diluted positive controls that were amplified by ARTIC V3, V4 and optimized V4 primers and sequenced using GridION from the Oxford Nanopore Technologies'.ResultsWe observed a 0.5% to 46% increase in genome recovery in 67% of the samples when using the original V4 pooling strategy compared to the V3 primers. Amplicon drop-offs at primer positions 23 and 90 were observed for all variants and positive controls. When using the optimized protocol, we observed a 60% improvement in genome recovery across all samples and an increase in the average depth in amplicon 23 and 90. Consequently, ≥95% of the genome was recovered in 72% (n = 31) of the samples. However, only 60–70% of the genomes could be recovered in samples that had <28% genome coverage with the ARTIC V3 primers. There was no statistically significant (p > 0.05) correlation between Ct value and genome recovery.ConclusionUtilizing the ARTIC V4 primers, while increasing the primer concentrations for amplicons with drop-offs or low average read-depth, greatly improves genome recovery of Alpha, Beta, Delta, Eta and non-VOC/non-VOI SARS-CoV-2 variants.
Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.