The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.ARM repeats are short 42-amino acid motifs that were first identified in the fruitfly (Drosophila melanogaster) segment polarity protein, armadillo (Riggleman et al., 1989). ARM repeats have been subsequently identified in a wide range of eukaryotic proteins, and these proteins interact with numerous other proteins via their ARM repeats, resulting in the regulation of a variety of cellular processes (for review, see Hatzfeld, 1999). Based on the crystal structure of the mammalian armadillo homolog, -catenin, each ARM repeat forms a trihelical structure that folds into a superhelix, and six ARM repeats are proposed to constitute a protein interaction domain (Huber et al., 1997). In animals, wellcharacterized ARM repeat proteins include -catenin/armadillo involved in the Wnt/wingless signaling pathway and cadherin-mediated cell adhesion, the APC tumor suppressor protein in Wnt signaling, and several other cadherin-associated ARM repeat proteins (Hatzfeld, 1999). In addition, there is the conserved nuclear import pathway in yeast (Saccharomyces cerevisiae), plants, and animals that involves the ARM repeat protein, Importin-␣, and the Importin- protein with related HEAT repeats (Andrade et al., 2001).More recently, a new class of ARM repeat proteins was identified in plants where the ARM repeat region is preceded by a E3 ubiquitin ligase motif called the U-box (Amador et al., 2001; Azevedo et al., 2001;Stone et al., 2003). The ubiquitination of proteins involves three enzymes: the E1 ubiquitin-activating enzyme, which forms a thioester intermediate with ubiquitin; the E2 ubiquitin-conjugating enzyme, which receives the ubiquitin molecule from the E1 enzyme; and the E3 ubiquitin ligase, which facilitates t...
The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.
No abstract
BackgroundIn plants, the ubiquitin-proteasome system is emerging as a significant regulatory system throughout the plant lifecycle. The ubiquitination of a target protein requires the sequential actions of the E1, E2 and E3 enzymes, with the latter E3 enzyme conferring target selection in this process. There are a large number of predicted E3 enzymes in plant genomes, and very little is known about the functions of many of these predicted genes. Here we report here an analysis of two closely-related members of the Arabidopsis Plant U-box (PUB) family of E3 ubiquitin ligases, PUB43 and PUB44.Principal FindingsHomozygous pub44/pub44 mutant seedlings were found displayed a seedling lethal phenotype and this corresponded with widespread cell death lesions throughout the cotyledons and roots. Interestingly, heterozygous PUB44/pub44 seedlings were wild-type in appearance yet displayed intermediate levels of cell death lesions in comparison to pub44/pub44 seedlings. In contrast, homozygous pub43/pub43 mutants were viable and did not show any signs of cell death despite the PUB43 gene being more highly expressed than PUB44. The PUB44 mutants are not classical lesion mimic mutants as they did not have increased resistance to plant pathogens. We also observed increased germination rates in mutant seeds for both PUB44 and PUB43 under inhibitory concentrations of abscisic acid. Finally, the subcellular localization of PUB44 was investigated with transient expression assays in BY-2 cells. Under varying conditions, PUB44 was observed to be localized to the cytoplasm, plasma membrane, or nucleus.ConclusionsBased on mutant plant analyses, the Arabidopsis PUB43 and PUB44 genes are proposed to function during seed germination and early seedling growth. Given PUB44's ability to shuttle from the nucleus to the plasma membrane, PUB44 may be active in different subcellular compartments as part of these biological functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.