Aseptic loosening of orthopedic implants caused by wear particles is a major clinical problem. This review examines the hypothesis that bacterial endotoxin contributes to aseptic loosening. Clinical findings support this hypothesis: bacterial biofilms exist on many implants from patients with aseptic loosening and antibiotics in bone cement reduce the rate of aseptic loosening. Three approaches were used to demonstrate that adherent endotoxin increases bioactivity of titanium particles. These experiments measured cytokine production and osteoclast differentiation in vitro and murine calvarial osteolysis in vivo. First, removal of >99.9% of the adherent endotoxin from titanium particles significantly ablates their biological activity. Second, adding lipopolysaccharide back to these "endotoxin-free" particles restores their biological activity. Third, cells or mice that are genetically hyporesponsive to endotoxin are significantly less responsive to titanium particles than are wild-type controls. Other investigators have confirmed and extended these results to include virtually all orthopedically relevant types of particles, including authentic titanium alloy particles retrieved from patients with loosening. Our recent studies suggest that adherent endotoxin on orthopedic implants may also inhibit initial osseointegration of the implants. Taken together, these studies suggest that bacterial endotoxin may have a significant role in induction of aseptic loosening.
Periprosthetic osteolysis is a major clinical problem that limits the long-term survival of total joint arthroplasties. Osteolysis is induced by implant-derived wear particles, primarily from the polyethylene bearing surfaces. This study examined two hypotheses. First, that similar mechanisms are responsible for osteolysis induced by polyethylene and titanium particles. Second, that lymphocytes do not play a major role in particle-induced osteolysis. To test these hypotheses, we used the murine calvarial model that we have previously used to examine titanium-induced osteolysis. Polyethylene particles rapidly induced osteolysis in the murine calvaria 5-7days after implantation. The polyethylene-induced osteolysis was associated with large numbers of osteoclasts as well as the formation of a thick periosteal fibrous tissue layer with numerous macrophages containing phagocytosed polyethylene particles. Polyethylene-induced osteolysis was rapidly repaired and was undetectable by day 21 after implantation. Lymphocytes were noted in the fibrous layer of wild-type mice. However, the amount of osteolysis and cytokine production induced by polyethylene particles was not substantially affected by the lack of lymphocytes in PfplRag2 double knock out mice. All of these findings are similar to our observations of osteolysis induced by titanium particles. These results provide strong support for both of our hypotheses: that similar mechanisms are responsible for osteolysis induced by polyethylene and titanium particles and that lymphocytes do not play a major role in particle-induced osteolysis.
Conditionally immortalized murine calvarial (CIMC) cells that support differentiation of precursors into mature osteoclasts were isolated. All six CIMC cell lines supported osteoclast differentiation in response to 1,25-dihydroxyvitamin D(3) or interleukin (IL)-11. CIMC-4 cells also supported osteoclast differentiation in response to tumor necrosis factor (TNF)-alpha, IL-1beta, or IL-6. The resultant multinucleated cells expressed tartrate-resistant acid phosphatase and formed resorption lacunae on mineralized surfaces. CIMC-4 cells, therefore, establish an osteoclast differentiation assay that is responsive to many cytokines and does not rely on isolation of primary stromal support cells. Low concentrations of the cytokines synergistically stimulated differentiation when osteoclast precursors were cocultured with either CIMC-4 cells or primary calvarial cells. Osteoclast differentiation induced by all stimuli other than TNF-alpha was completely blocked by osteoprotegerin, whether the stimulators were examined alone or in combination. Moreover, study of precursors that lack TNF-alpha receptors showed that TNF-alpha induces osteoclast differentiation primarily through direct actions on osteoclast precursors, which is a distinct mechanism from that used by the other bone-resorptive agents examined in this study.
Aseptic loosening of orthopaedic implants occurs in the absence of clinical signs of infection. Nevertheless, bacterial endotoxins derived from subclinical infections, systemic sources, or the implant manufacturing process may contribute to aseptic loosening. Also, the rate of implant infection is greater in patients with inflammatory arthritis than in patients with osteoarthritis. We hypothesized that lipopolysaccharide, the classic endotoxin derived from gram-negative bacteria, is more prevalent in periprosthetic tissue surrounding aseptically loose implants in patients with inflammatory arthritis than in patients with osteoarthritis. To test this, we used a modified Limulus amebocyte assay not affected by beta-glucan-like molecules in mammalian tissues. Lipopolysaccharide rarely was detected in periprosthetic tissue from patients with osteoarthritis and aseptic loosening (one of six patients). In contrast, lipopolysaccharide was detected despite the absence of any clinical signs of infection in peri-prosthetic tissue from all four patients with inflammatory arthritis (rheumatoid arthritis, juvenile rheumatoid arthritis, and systemic lupus erythematosus). Lipopolysaccharide also was detected in two patients with gram-negative infections, who were included as positive control subjects. Endotoxins derived from low-grade or systemic bacteremia may be important contributors to aseptic loosening particularly in patients with autoimmune conditions such as inflammatory arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.